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Abstract

This research proposal systematically explores the paradigm shift initiated by consid-
ering Generative Artificial Intelligence (GAI)—specifically, large language model (LLM)-
based agents—as Endogenous Economic Agents within financial markets, endowed with
independent cognition, decision-making capabilities, and behavioral biases. Diverging
from conventional research trajectories that treat AI merely as an ancillary analytical tool,
this study is grounded in the theoretical premise of ”Homo Silicus” (The Siliconized Hu-
man). We hypothesize that LLM agents, trained on vast corpora of human text, implic-
itly inherit human social preferences and cognitive limitations, leading to the emergence
of novel market dynamics distinct from traditional algorithmic trading in high-frequency
interactions. The proposed methodology involves designing a comprehensive Cognitive
Architecture that incorporates modules for perception, memory, reflection, and decision-
making. This architecture will be implemented in a microsecond-precision Continuous
Double Auction (CDA) market environment to simulate the complex game-theoretic be-
haviors of tens of thousands of heterogeneous AI agents. The core objectives are to quanti-
tatively assess: (1) micro-level behavioral biases (e.g., variations in loss aversion) exhib-
ited by AI agents; (2) meso-level risks of Algorithmic Collusion; and (3) the macro-level
mechanisms through which these agents can trigger systemic risks, such as a Flash Crash.
This proposal not only offers a new experimental paradigm for computational finance but
also provides regulatory bodies with empirical evidence, based on a ”Regulatory Sand-
box” approach, for policy formulation in the emerging era of ”human-machine hybridiza-
tion.”
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1 Introduction

1.1 The Rise of Agentic AI in Finance: From Tools to Actors
The evolution of financial markets is fundamentally a history of co-evolution between the
cognitive capabilities and decision-making speed of trading entities. For a long period, the
predominant paradigm in both academia and the financial industry defined Artificial Intelli-
gence (AI) as a ”tool” or an ”Oracle” designed to assist human decision-making. Under this
”Predictive Paradigm,” the core mandate of models, whether traditional econometrics or deep
learning-based sequential prediction algorithms (such as LSTM or Transformer), was confined
to minimizing forecast errors using historical data—i.e., predicting returns, volatility, or default
probabilities [10]. However, with the explosive breakthrough of Generative AI (GAI) and Large
Language Models (LLMs), we are currently undergoing a historical leap from the Predictive
Paradigm to the ”Agentic Paradigm” [8, 26].

Current LLM agents have transcended the scope of mere information processing, exhibit-
ing human-like capabilities in Reasoning, Memory, Reflection, and autonomous Planning. In
financial practice, the emergence of autonomous trading frameworks, exemplified by models
such as TradingGPT and FinMem [23, 31], signals AI’s transformation from a passive analyt-
ical instrument into a Goal-Directed actor. These intelligent agents are not only capable of
processing multi-modal, heterogeneous information—including financial news and corporate
reports—but can also independently execute trading instructions on a microsecond timescale,
based on specific risk appetites and strategic logic. Consequently, AI is no longer merely a
”lens” for observing the market; it is becoming the very ”cell” that constitutes the market itself.
This ontological shift compels us to re-examine the micro-foundations of financial markets:
When thousands of AI agents endowed with high-level cognitive abilities interact within the
market, how will they reshape asset pricing efficiency, liquidity structure, and systemic stabil-
ity? This has rapidly become the foremost question demanding an answer from the field of
computational finance [16].

1.2 Theoretical Gap: The Absence of “Homo Silicus” in Market Mi-
crostructure Models

Despite significant advancements in Agent-Based Computational Economics (ACE) over the
past three decades, existing market microstructure models still confront a notable theoretical
vacuum when simulating AI-dominated markets. Traditional Agent-Based Models (ABMs)
are typically constrained by a binary dilemma: the choice between ”Zero-Intelligence” agents
and those governed by ”Hard-Coded Rules” [11]. Early ZI agents, lacking cognitive capac-
ity, could only simulate the most rudimentary supply-demand matching. While subsequent
Heterogeneous Agent Models (HAMs) introduced the interplay between fundamentalists and
chartists, their behavioral rules remained static and pre-set, failing to capture adaptive and
learning capabilities [4].

More recently, Deep Reinforcement Learning (DRL) agents have emerged with learning
capabilities; however, their ”Black-Box” nature renders the decision-making process opaque
and often results in convergence towards homogeneous optimal strategies, making it difficult
to replicate the rich tapestry of human irrationality observed in real financial markets [14].
More critically, existing models fail to incorporate the central concept of ”Homo Silicus” (The
Siliconized Human) proposed by John Horton—the idea that LLM agents implicitly internal-
ize human social preferences, heuristic thinking, and even cognitive biases through their pre-
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training process [18]. Current literature conspicuously lacks research that systematically maps
this ”silicon cognition” onto market microstructure models. It remains unclear whether these
”Silicon Economic Agents,” trained on vast amounts of human text yet executing at machine
speed, will correct human irrationality, thereby enhancing market efficiency, or if they will pre-
cipitate novel forms of market failure through algorithmic collusion and herding behavior [5].
This missing transmission mechanism, linking ”micro-cognition to macro-emergence”, con-
stitutes the core theoretical gap that this study seeks to bridge.

1.3 Research Questions
Building upon the aforementioned context, this study aims to explore the behavioral dynamics
of AI agents as endogenous economic entities through the construction of a high-fidelity gen-
erative multi-agent simulation system. Specifically, this research focuses on the following core
questions across three distinct levels:

• RQ1 [Micro-Level]: Cognitive Biases and Heterogeneity in AI Agents. Will LLM-
based trading agents inherit or even amplify human behavioral finance biases (e.g., the
disposition effect, recency bias)? Given different Persona Calibrations—such as agents
initialized based on genuine investor psychological profiles (Big Five Personality Traits)—
what kind of heterogeneity will their risk aversion coefficients and decision logic exhibit
when faced with market shocks? Will they behave as ”hyper-rational” machines or as
”anthropomorphized” investors with specific prejudices [15, 30]?

• RQ2 [Meso-Level]: The Emergence Mechanism of Tacit Algorithmic Collusion. In a
Continuous Double Auction (CDA) market characterized by information asymmetry and
incomplete contracts, will autonomous AI agents with high-level reasoning capabilities
spontaneously form Tacit Collusion? For instance, can they manipulate market liquidity
by engaging in acts such as Spoofing (false order placement) or synchronously widening
the bid-ask spread, all without explicit communication protocols [3]? Does a Multi-
Agent Debate mechanism inhibit or accelerate the formation of collusion in this process
[1]?

• RQ3 [Macro-Level]: Systemic Risk and Regulatory Boundaries. Can the market dy-
namics dominated by generative agents successfully replicate the Stylized Facts of real
financial markets, such as volatility clustering, fat-tailed return distributions, and long
memory? Will the homogeneous reaction of AI agents to external information shocks
significantly increase the probability of a Flash Crash? Are existing market Circuit
Breakers still effective in countering nanosecond-response AI herding behavior, or is
there a need to design novel regulatory tools based on algorithmic behavioral character-
istics [16]?

1.4 Significance of the Study
The academic merit and practical relevance of this research are manifested across three dimen-
sions: theoretical innovation, practical application, and regulatory implication.

• Theoretical Dimension: Inaugurating the Paradigm of “Machine Behavioral Fi-
nance”. This study transcends the limitations of traditional finance, which often models
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agents as homogeneous rational actors or simple noise traders. We are the first to system-
atically incorporate Generative Agents capable of language understanding and reason-
ing into asset pricing models. By bridging the cognitive theories of behavioral finance
with the Agent architecture of computer science, this research will catalyze the devel-
opment of Machine Behavioral Finance as an emerging interdisciplinary field, thereby
providing a new theoretical cornerstone for understanding market microstructure in the
algorithmic economy.

• Practical Dimension: Constructing a High-Fidelity Strategy Validation Sandbox.
The research will culminate in the development of a simulation platform, the Agent
Trading Arena, calibrated using real Level 2 order book data. This platform overcomes
the deficiency of traditional back-testing, which fails to simulate crucial phenomena such
as Price Impact and Reflexivity. It offers financial institutions a ”Digital Twin” mar-
ket to test the performance of complex trading strategies in an adversarial environment,
yielding substantial practical application value.

• Regulatory Dimension: Enabling “Ex-Ante Regulation” and Agile Governance. In
the face of increasingly complex algorithmic trading risks, traditional ”ex-post account-
ability” regulation is demonstrably lagging. The simulation environment provided by
this research serves as a ”Regulatory Sandbox” for supervisory authorities, allowing
policymakers to simulate the impact of high-frequency AI trading on market stability,
test the effectiveness of antitrust policies, circuit breaker thresholds, or AI conduct codes
*before* actual crises occur. This provides both empirical evidence and technical tools
for financial regulation in the age of ”human-machine hybridization.”

2 Literature Review
This chapter systematically reviews the interdisciplinary literature spanning computational fi-
nance, artificial intelligence, and behavioral economics. Its primary purpose is to clearly define
the academic position of this research and to elucidate how Generative Artificial Intelligence
can address the cognitive gap present in existing market simulation models.

2.1 Agent-Based Computational Economics (ACE): From ZI to RL
The evolution of financial market simulation models has unfolded across three principal stages,
each characterized by a progressive enhancement in the cognitive capabilities of the agents.

The first stage focused on research employing Zero-Intelligence (ZI) agents. The pio-
neering work by Gode and Sunder demonstrated [11] that ZI agents, whose behavior is purely
random yet constrained by a simple budget restriction, could achieve prices in a double-auction
market that were close to the theoretical equilibrium. This finding established the classic view
that ”Market Institution dictates allocative efficiency more profoundly than individual ratio-
nality.” However, ZI models inherently fail to account for complex non-equilibrium phenomena
such as asset bubbles and market crashes.

The second stage involved traditional Agent-Based Models (ABM) that introduced agents
with Heterogeneous Rules. Platforms such as the Santa Fe Artificial Stock Market (SF-
ASM) [2] and the JLM Simulator [20] modeled the strategic interplay between fundamental
analysts (Fundamentalists) and chartists (Chartists). Lux and Marchesi demonstrated that this
heterogeneous interaction is crucial for generating financial Stylized Facts, such as Volatility
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Clustering and Fat Tails [25]. Nevertheless, the behavior of agents in these models is typically
based on static ”If-Then” rules, lacking the necessary adaptability when confronted with novel
market information.

The third stage is characterized by financial simulations based on Deep Reinforcement
Learning (DRL). Following the success of AlphaGo, researchers began utilizing DRL algo-
rithms (e.g., PPO, DQN) to train agents to maximize returns within complex financial environ-
ments. Frameworks like FinRL have showcased the potential of RL agents in portfolio man-
agement and high-frequency trading [24]. However, existing literature highlights significant
limitations of RL agents: they are essentially ”Black-Box” optimizers, lacking interpretabil-
ity, and often converge to homogeneous optimal strategies (Model Monoculture), resulting in
simulation markets that lack the cognitive diversity and irrational noise characteristic of real
human markets [6].

2.2 LLMs in Finance
The advent of Large Language Models (LLMs) has catalyzed a new paradigm centered on Gen-
erative Agents. Park et al. demonstrated the emergent capabilities of generative agents—including
memory, reflection, and social planning—in the ”Stanford Town” experiment [26]. Since 2024,
the latest literature has begun attempting to migrate this architectural approach to trading sce-
narios, forming an early research cluster focused on ”LLM-based Trading Agents.”

• TradingGPT [23]: Introduced a Layered Memory and a Chain-of-Thought (CoT)
mechanism, enabling the agent to process unstructured text such as financial news. Its
innovation lies in the design of a Multi-Agent Debate mechanism, which significantly
enhanced decision robustness by having subsidiary agents with bullish and bearish view-
points debate to correct for potential hallucinations.

• FinMem [31]: Focuses on simulating the cognitive limitations of human investors. This
study constructed a memory retrieval mechanism based on the Ebbinghaus forgetting
curve, allowing the agent to dynamically adapt to market Regime Shifts. It successfully
demonstrated that agents endowed with Episodic Memory outperform simple momen-
tum strategies in long-term investing.

• StockAgent [32]: Shifted the research perspective from single-agent profitability to col-
lective game theory. This framework simulated the interactions of multiple LLM agents
in a paper trading environment and observed price discovery processes that diverged from
traditional ABMs.

While these works validate the potential of LLMs in processing financial information, most
have concentrated on the profitability backtesting of individual agents. They have largely over-
looked the Reflexivity impact on market microstructure (e.g., liquidity, spreads, and depth)
arising from large-scale agent interaction [28]. This research aims to specifically overcome this
limitation, focusing instead on the system’s macro-emergence properties.

2.3 Behavioral Finance & AI: Biases in LLMs
Another core dimension for considering AI as a subject of financial research is its potential
for ”human-like” cognitive biases. The ”Homo Silicus” hypothesis, proposed by Horton

7



(2023) [18], posits that LLMs can function as powerful simulators of human economic behav-
ior. Current empirical research presents two distinctly conflicting findings, which constitute a
valuable academic debate:

On one hand, the study by Henning et al. [17] discovered that uncalibrated GPT-4 agents
exhibited ”Hyper-Rationality” in asset pricing experiments, tending to anchor prices near fun-
damental values and rarely generating bubbles. This finding suggests that generic LLMs may
have undergone excessive Reinforcement Learning from Human Feedback (RLHF) align-
ment, potentially causing them to lose the capacity to simulate the genuine Animal Spirits of
real markets.

On the other hand, research by Zhou & Ni [34] and Yang et al. [30] indicates that through
specific Persona Prompting, LLMs can conspicuously display classic behavioral finance bi-
ases:

• Loss Aversion: Agents exhibit the Disposition Effect, manifesting as a tendency to
prematurely sell profitable stocks while holding onto losing ones.

• Herding Behavior: In social network environments (such as simulated Twitter), LLM
agents are highly susceptible to collective sentiment, leading to irrational momentum
chasing and selling [22].

This contradiction underscores the criticality of Calibration: To accurately replicate authentic
financial markets, we must not directly employ raw models, but rather construct a heteroge-
neous population of agents whose behavioral profiles align with the empirical distribution of
real investor psychological characteristics.

2.4 Market Microstructure & Algorithmic Collusion
At the level of market microstructure, algorithmic collusion has emerged as a novel risk com-
manding high scrutiny from regulatory bodies (such as the SEC and FTC). Calvano et al. [5]
first identified the phenomenon of Tacit Collusion in their research on AI pricing algorithms:
AI agents, with no explicit communication and no hard-coded collusive instructions in their
code, spontaneously learned to maintain supra-competitive prices solely through trial-and-error
learning.

Dou & Goldstein [9], in their NBER working paper, further extended this finding to finan-
cial trading algorithms. They identified two micro-mechanisms of AI collusion:

1. Price-Trigger Strategies: Analogous to the ”Grim Trigger Strategy” in game theory, AI
agents learned to engage in aggressive retaliatory pricing against any competitor attempt-
ing to narrow the bid-ask spread.

2. Over-Pruning Bias: Termed ”Artificial Stupidity,” this refers to the phenomenon where
AI agents prematurely abandon competitive strategies during the exploration phase, set-
tling into a sub-optimal collusive equilibrium.

Furthermore, the 2010 Flash Crash event demonstrated that high-frequency algorithmic
feedback loops are critical factors contributing to market fragility [21]. Danielsson et al. [7]
cautioned that while LLM agents may not match the processing speed of traditional High-
Frequency Trading (HFT) algorithms, their homogeneous interpretation of news sentiment
(Model Monoculture) could trigger a novel, semantic-understanding-based Herding Effect,
leading to an instantaneous liquidity drain. Existing literature has yet to systematically test this
risk within an L2-level Limit Order Book (LOB) simulation environment [12, 16], a gap that
this research endeavors to fill.
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3 Theoretical Framework
This research establishes a closed-loop generative agent simulation framework by integrating
theories from computational cognitive science, behavioral finance, and market microstructure.
This chapter defines the agent’s cognitive architecture (internal state), the methodology for
persona calibration (source of heterogeneity), and the market interaction mechanism (external
environment).

3.1 Cognitive Architecture for Financial Agents (CAFA)
To simulate trading entities endowed with ”human-like” decision-making capabilities, this
study proposes a specialized Cognitive Architecture for Financial Agents (CAFA). This ar-
chitecture transcends the simple ”state-action” mapping of traditional Reinforcement Learning
(RL) agents by introducing explicit memory and reasoning modules, enabling the agents to pro-
cess unstructured information and exhibit adaptive behavior. CAFA comprises the following
four core modules:

3.1.1 Perception Module: Multimodal Signal Processing

Agents do not directly observe the state space St; rather, they process multimodal information
streams through a perception filter.

• Textual Perception: Utilizes a financial domain-fine-tuned Embedding Model (such
as FinBERT or a dedicated LLM embedding layer) to process financial news, central
bank announcements, and social media sentiment [19]. The system transforms the un-
structured text Dt into a semantic vector vtext, and extracts features related to ”sentiment
polarity” and ”event type.”

• Numerical & Visual Perception: Agents not only receive Level 2 (L2) Limit Order
Book (LOB) data but are also equipped with a visual encoder (such as a CLIP variant) to
directly interpret Candlestick Charts, thereby identifying technical patterns like ”Head
and Shoulders” or ”Double Bottoms,” simulating the visual cognitive process of chartist
traders.

3.1.2 Memory Module: Decay and Retrieval

Inspired by the ”Generative Agents” architecture of Park et al. [26], CAFA introduces a hier-
archical memory system to resolve the conflict between the limited Context Window of LLMs
and the need for long-term market interaction. The memory stream encompasses Working
Memory (current market state), Episodic Memory (historical trading and P&L experiences),
and Semantic Memory (long-term accumulated trading rules).

The memory retrieval mechanism simulates the human law of forgetting. For a given query
q (e.g., a sudden market news event), the retrieval score Score(m, q) for a memory snippet m
is defined as:

Score(m, q) = α · I(m) + β ·R(m, q) + γ · e−λ(tnow−tm)

Where:

• I(m) denotes the Importance, automatically annotated by the LLM during memory
generation (e.g., memories of substantial losses are assigned high importance);
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• R(m, q) denotes the Relevance, measured as the cosine similarity between the query
vector and the memory vector;

• e−λ(tnow−tm) denotes the Recency, simulating the exponential decay of memory over
time;

• α, β, γ are hyperparameters used to adjust the weights.

3.1.3 Reasoning Module: Chain-of-Thought and Reflection

This constitutes the core decision engine of CAFA.

• Chain-of-Thought (CoT): Prior to outputting a trading instruction, the agent must gen-
erate a natural language logical derivation (e.g., ”Although the RSI indicator is over-
bought, given the recently released positive earnings report and the stack of buy orders
in the LOB, I conclude that the upward trend is not over.”). This significantly enhances
the model’s interpretability [29, 33].

• Self-Reflection: A ”Trading Diary” mechanism is introduced. After the close of the
trading day, the agent compares its expectations against the actual outcomes. Should
a loss occur, the agent generates a reflective text stored in its Semantic Memory (e.g.,
”I underestimated the impact of the interest rate hike on technology stocks”), thereby
allowing it to correct its strategy in subsequent decisions [27, 31].

3.2 The “Homo Silicus” Hypothesis and Persona Calibration
The research relies on the Homo Silicus (Silicon Human) hypothesis, which posits that LLMs
implicitly internalize human social preferences and cognitive biases [18]. To preclude the sys-
temic biases caused by Model Monoculture, it is imperative that we construct a highly hetero-
geneous population of agents.

3.2.1 Calibration via Survey of Consumer Finances (SCF)

This study proposes to use the Survey of Consumer Finances (SCF) data to conduct a ”de-
mographic mapping” of the agents. The specific procedure is as follows:

1. Data Sampling: Sample real investor individuals i from the SCF database and extract
their attribute vector xi.

2. Prompt Engineering Mapping: Construct a mapping function F : xi → System Prompti.
For example, a high-net-worth individual with low risk aversion is translated into the
Prompt: ”You are a 55-year-old veteran investor with $5 million in assets, primarily
focused on long-term capital appreciation and insensitive to short-term volatility.”

3. Bias Injection: Based on behavioral finance literature, cognitive biases will be explicitly
injected into a specific proportion of agents (e.g., endowing 30% of retail agents with the
Disposition Effect, and 20% with Overconfidence) to test the market’s fragility under
irrational exuberance.
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3.3 Mechanism Design: Continuous Double Auction (CDA) & LOB Dy-
namics

To capture the microstructure characteristics inherent in high-frequency trading environments,
this research models the market as a Continuous Double Auction (CDA) simulation, rather
than simple end-of-day closing price backtesting.

3.3.1 Limit Order Book (LOB) Dynamics

The market state is completely described by the Limit Order Book Lt, which contains the
queue of Bids and Asks. The simulation engine adheres to the matching principle of Price-
Time Priority.

• Order Types: Agents can submit Limit Orders, Market Orders, and Cancel Orders.

• Market Impact: Unlike conventional models that assume infinite liquidity, this system
endogenously calculates Price Impact. Large Market Orders will ”eat through” multi-
ple layers of the LOB depth, resulting in an average execution price inferior to the best
quote, thereby truly reflecting the friction costs of large-scale trading.

3.3.2 Latency and Asynchronous Interaction

To study algorithmic collusion and flash crashes, the time dimension is modeled as microsecond-
level discrete events. The system introduces a heterogeneous latency parameter δi:

texecute = tdecision + δi + ϵ

Where δHFT ≪ δRetail. This asynchronous interaction mechanism allows us to simulate the
speed advantage of High-Frequency Traders (HFTs) relative to ordinary LLM agents, and how
this advantage might evolve into Predatory Trading.

4 Methodology
This chapter details the technical roadmap for constructing the high-fidelity ”Agent Trading
Arena.” To resolve the spatio-temporal mismatch between the slow inference speed of Gener-
ative Agents and the microsecond-level matching required by financial markets, this research
proposes an asynchronous, loosely coupled hybrid system architecture.

4.1 System Architecture: The “Agent Trading Arena”
To support high-frequency interaction among N = 10, 000+ heterogeneous agents, we forgo
traditional single-threaded backtesting frameworks in favor of a distributed architecture based
on the Actor Model. The system comprises three core layers:

4.1.1 Hybrid Computational Layer (Python/Rust)

• Agent Logic Layer (Python): Given that mainstream LLM frameworks (such as Py-
Torch and LangChain) are rooted in the Python ecosystem, the agent’s cognitive mod-
ules (Perception, Memory, Reasoning) will be executed in a Python environment. Each
agent operates as an independent AsyncIO process, responsible for maintaining its own
context window and memory retrieval.
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• Matching Engine Core Layer (Rust): To accurately simulate real Limit Order Book
(LOB) dynamics, the Matching Engine will be implemented in Rust. Rust’s memory
safety and zero-cost abstraction characteristics enable it to process order insertions, can-
cellations, and matching at a microsecond level, thus bypassing the Python Global In-
terpreter Lock (GIL) bottleneck.

4.1.2 Asynchronous Communication via RabbitMQ

Communication between the agents and the exchange is decoupled using a Message Queue
(specifically RabbitMQ/ZeroMQ).

• Uplink (Orders): Agents send order messages, adhering to the FIX Protocol standard
(in JSON format), to the EXCHANGE IN queue.

• Downlink (Market Data): The exchange broadcasts L2-level LOB snapshots and exe-
cution information (Tick Data) to the MARKET DATA PUB channel.

This asynchronous architecture not only simulates network latency present in real trading but
also allows us to horizontally scale the number of agents across a distributed cluster.

4.2 Simulation Engine Dynamics
The central task of the simulation engine is to generate endogenous price paths and liquidity
characteristics, moving beyond the simple replay of historical data.

4.2.1 Matching Logic and Continuous Double Auction (CDA)

The market utilizes the Continuous Double Auction (CDA) mechanism. At any given time
t, the Limit Order Book Lt comprises the set of Bids Bt and the set of Asks At. Matching
strictly adheres to the principle of Price-Time Priority. A trade is executed immediately when
a newly arriving buy order bnew satisfies P (bnew) ≥ mina∈At P (a); the remaining portion then
enters the set Bt. This mechanism ensures that the micro-foundation of market clearing is
consistent with major exchanges like NASDAQ and NYSE [11].

4.2.2 Stochastic Latency Modeling

To investigate algorithmic collusion and the advantages held by high-frequency trading, we
introduce a heterogeneous latency model. The delay ∆ti between the agent i’s instruction
sending time tsend and the exchange processing time tproc is modeled as:

∆ti = δnet + δcompute + ϵt

Where:

• δnet represents the network transmission latency. For market-making agents hosted on
high-frequency servers, δnet ∼ Exp(λfast); for ordinary retail agents, δnet ∼ Exp(λslow).

• δcompute represents the LLM inference latency, which is dependent on the number of
tokens generated.

• ϵt is the stochastic jitter.

This modeling approach allows us to precisely quantify how the ”speed advantage” is con-
verted into an ”information advantage.”
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4.2.3 Endogenous Market Impact

In contrast to traditional backtesting, which assumes infinite liquidity, this system endoge-
nously computes Market Impact. For a market order of size Q, the actual average execution
price P̄ depends on the depth distribution of the LOB:

P̄ (Q) =
1

Q

∫ Q

0

P (v) dv

Where P (v) is the price of the v-th unit of liquidity consumed in the order book. This feature
necessitates that agents weigh trading speed against slippage cost, which should lead to the
emergence of advanced strategies such as Order Splitting.

4.3 Agent Calibration: From Survey Data to Prompts
To construct a ”Silicon Society” whose distribution aligns with the real world, we will calibrate
the agents using data from the Survey of Consumer Finances (SCF) [18].

4.3.1 Demographic Mapping Pipeline

We map each sample household h from the SCF dataset to an independent LLM agent. The
mapping function Φ : Rd → T transforms numerical features into a natural language Prompt
template T :

Template: “You are a [Age] year old investor with a net worth of $[Net Worth].
Your risk tolerance is [Risk Level] (based on SCF Question X3014). You work in
the [Industry] sector. Currently, the market news indicates...”

4.3.2 Risk Tolerance Calibration

Risk preference is categorized into four levels (ranging from ”unwilling to take any risk” to
”willing to take substantial risk for high returns”). We will utilize Few-Shot Prompting to
fine-tune the LLM, ensuring that the risk aversion coefficient γ exhibited in the agent’s asset
allocation decisions matches the implied coefficient derived from the SCF data [13].

4.4 Data Sources
This study will employ multimodal data to both drive and validate the simulation environment:

• LOBSTER (Level 2 Market Data): High-precision LOB Reconstitution data from
NASDAQ will be used as the ”seed” environment for the simulation, providing the initial
liquidity state and the prior distribution of order flow arrival rates.

• FinGPT (Financial News Sentiment): The open-source FinGPT dataset will be lever-
aged to provide a stream of financial news aligned with a historical timeline. Agents will
read this news and generate sentiment signals to drive their trading decisions.

• Synthetic Data via CTGAN: To stress-test extreme scenarios (such as the 2010 Flash
Crash), we will use a Conditional Tabular Generative Adversarial Network (CT-
GAN) to produce synthetic extreme order flow data.
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5 Experimental Design
This research will adhere to the logical chain of ”Micro-Validation → Macro-Emergence →
Policy Intervention,” designing three core experiments. All experiments will be conducted
within the aforementioned Agent Trading Arena simulation environment.

5.1 Experiment 1: Micro-validation of Behavioral Biases
Objective: To verify whether the Persona Calibrated LLM agents successfully replicate clas-
sic behavioral biases of human investors at the individual system level, particularly the Dispo-
sition Effect.

Experimental Setup:

• Subjects: Initialize N = 500 LLM agents calibrated based on different SCF samples
(differentiating between ”Conservative” and ”Aggressive” types).

• Environmental Input: Agents are fed a Synthetic Price Path containing both positive
and negative shocks, ensuring that all agents face the identical market history.

• Task: Agents must decide at each time step whether to ”Hold,” ”Sell to Realize Gain,”
or ”Sell to Cut Loss.”

Metrics and Hypotheses: We adopt the classic metric proposed by Odean (1998), calcu-
lating the Proportion of Gains Realized (PGR) and the Proportion of Losses Realized (PLR):

PGR =
Realized Gains

Realized Gains + Paper Gains
, PLR =

Realized Losses
Realized Losses + Paper Losses

• Hypothesis H1: For generic LLM agents without specific prompt engineering, their
behavior tends towards rationality, i.e., PGR ≈ PLR.

• Hypothesis H2: Agents injected with a ”Loss Aversion” persona prompt will exhibit a
significant Disposition Effect, meaning PGR > PLR (prematurely selling winners and
holding losers), and this difference will be statistically significant (t-test, p < 0.01).

5.2 Experiment 2: Emergence of Stylized Facts
Objective: To investigate whether a market composed of generative agents can spontaneously
exhibit the Stylized Facts of real financial markets, thereby validating the model’s effectiveness
as a macro-simulator.

Experimental Setup:

• Control Group (Baseline): The market is composed of 100% Zero-Intelligence (ZI)
agents, who are subject to budget constraints but place orders randomly.

• Experimental Group (Homo Silicus): The market consists of 10% Fundamentalist
agents, 40% Momentum Trading agents (Chartists), and 50% Noise Traders, with the
Momentum agents possessing CoT-based trend reasoning capabilities.

• Procedure: The simulation is run for 10,000 time steps, recording the minute-by-minute
closing price Pt and the logarithmic return rt = lnPt − lnPt−1.
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Key Validation Metrics: We will compare the statistical characteristics of the return series
generated by the two market groups:

1. Fat Tails: Calculate the Kurtosis of the return distribution. Real markets typically satisfy
K > 3. We hypothesize that Kexp ≫ Kcontrol ≈ 3.

2. Volatility Clustering: Examine the Autocorrelation Function (ACF) of the absolute re-
turns |rt|. If clustering effects are present, Corr(|rt|, |rt−τ |) will remain significantly
positive for larger values of τ .

3. Long Memory: Calculate the Hurst Exponent H using R/S analysis. If 0.5 < H < 1,
it indicates that the market exhibits persistent trends and does not follow a random walk.

5.3 Experiment 3: Systemic Risk & Regulation via Sandbox
Objective: To simulate extreme risk scenarios within a ”Regulatory Sandbox” and test the
effectiveness of novel market manipulation detection and regulatory tools in AI-dominated
markets.

5.3.1 Scenario A: Tacit Algorithmic Collusion

Context: Theory predicts that in oligopolistic Market Maker (MM) markets, AI may discover
that ”maintaining a high bid-ask spread” is a Nash Equilibrium through trial-and-error learning
(Dou et al., 2025).

• Setup: Only five large LLM Market Maker agents are retained, retail agents are removed,
and they are engaged in a long-term game.

• Detection Mechanism: Monitor the evolution of the Bid-Ask Spread. Collusion is
inferred if the spread is significantly higher than the perfectly competitive level, without
any evidence of explicit communication.

• Policy Test: Introduce a Zero-Knowledge Proof-based Regulation (ZKP-based Reg-
ulation), requiring Market Makers to prove that their quoting algorithms do not contain
specific ”retaliatory trigger” logic, and observe whether this disrupts the collusive equi-
librium.

5.3.2 Scenario B: Flash Crash and Circuit Breakers

Context: The 2010 Flash Crash demonstrated that the homogeneous reaction of high-frequency
algorithms can instantaneously deplete liquidity.

• Stress Test: At time t = 5000, introduce a massive exogenous negative news shock
(generated via FinGPT as extremely pessimistic macro-economic news).

• Herding Metric: Use the LSV (Lakonishok, Shleifer, and Vishny) measure to monitor
the real-time consistency of buy and sell directions:

LSVt =

∣∣∣∣ Bt

Bt + St

− P buy
t

∣∣∣∣− Et (1)

• Circuit Breaker Intervention: Compare the Time to Recovery across three regulatory
environments:
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– No Intervention (Laissez-faire)

– Traditional Circuit Breakers (Traditional CB): Trading is halted for 15 minutes if
the index falls by > 7%.

– AI-Specific Limits: Restrictions on the Order-to-Trade Ratio or the imposition of
a dynamic Tobin Tax on aggressive momentum strategies.

6 Expected Contributions and Timeline
This research aims to establish the empirical foundation of ”Machine Behavioral Finance”
through a closed-loop trajectory of ”Build → Simulate → Validate.” The expected outcomes are
not only intended to expand academic theory but also to provide open-source tools of industrial
strength and concrete policy recommendations for regulation.

6.1 Expected Contributions
The core contributions of this project can be summarized across the following three dimensions
(3P: Papers, Platform, Policy):

6.1.1 1. Theoretical Innovation: Founding “Machine Behavioral Finance”

• Reconstruction of Micro-Foundations: For the first time, this study introduces Large
Language Model (LLM)-based ”Homo Silicus” (Silicon Economic Agents) into market
microstructure research, quantitatively assessing the causal impact of ”Persona Calibra-
tion” on asset pricing.

• Explaining Algorithmic Collusion: We will unveil the specific path dependencies through
which autonomous AI agents evolve Tacit Collusion via trial-and-error learning, even
without explicit communication. This challenges existing antitrust law standards for de-
termining ”intent.”

6.1.2 2. Methodological Contribution: The Open-Source “Agent Trading Arena”

• High-Performance Simulation Benchmark: We will release the first open-source sim-
ulation platform based on a Rust/Python hybrid architecture, capable of support-
ing high-frequency interaction among tens of thousands of LLM agents. This plat-
form endogenously incorporates Limit Order Book (LOB) Dynamics and network la-
tency, solving the critical limitations of traditional backtesting regarding the simulation
of ”Price Impact” and ”Reflexivity.”

• Standardized Dataset: We will provide an Agent Persona Repository, a standardized
Benchmark calibrated using SCF (Survey of Consumer Finances) data, to assist the
academic community in studying heterogeneous agents.

6.1.3 3. Practical & Regulatory Implications: AI Governance Sandbox

• Regulatory Sandbox Mechanism: We will propose an algorithmic regulatory frame-
work based on Zero-Knowledge Proofs (ZKP), allowing regulatory bodies to verify
whether trading algorithms contain predatory strategies without compromising the intel-
lectual property of the code.
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• Policy White Paper: A Policy Brief will be drafted for regulatory bodies such as the
SEC or CFTC, recommending adjustments to the trigger thresholds and recovery logic
of Circuit Breakers in AI-dominated high-frequency markets.

6.2 Research Timeline
This research project is planned for completion within 12 to 15 months, divided into three
phases: infrastructure construction, simulation experiment execution, and results analysis and
dissemination.

6.2.1 Phase 1: Infrastructure & Calibration (Months 1-4)

Focus: System Development & Data Engineering

• Month 1 (Core Engine): Develop the high-performance Matching Engine based on
Rust, implementing the logic for LOB order insertion, cancellation, and execution; set
up the RabbitMQ message queue for asynchronous communication between the Python
Agent and Rust Engine.

• Month 2 (Agent Architecture): Build the CAFA Cognitive Architecture using LangChain,
implementing the Perception-Memory-Reflection modules; integrate FinBERT and CLIP
models to handle multimodal (text/chart) inputs.

• Month 3 (Data Pipeline): Clean and process LOBSTER L2 high-frequency data as the
market environment ”seed”; utilize FinGPT to process historical financial news streams;
generate Synthetic Crash Data for extreme scenario testing.

• Month 4 (Persona Calibration): Process SCF survey data, use Prompt Engineering
to construct the persona descriptors for N = 10, 000 heterogeneous agents, and conduct
small-scale Turing tests to validate the consistency of their risk preferences.

6.2.2 Phase 2: Simulation & Experimentation (Months 5-8)

Focus: Running Experiments & Iterative Tuning

• Month 5 (Exp 1 - Micro Validation): Run single-agent experiments to test the Disposi-
tion Effect in agents with different Personas when facing gains and losses; calibrate the
loss aversion coefficient λ.

• Month 6 (Exp 2 - Macro Emergence): Launch the full-scale market simulation. Com-
pare the statistical characteristics of the ”Zero-Intelligence Agent Market” versus the
”LLM Agent Market” to validate the emergence of Volatility Clustering and Fat Tails.

• Month 7 (Exp 3 - Systemic Risk): Simulate extreme scenarios (e.g., replicating the
2010 Flash Crash). Measure the Herding Intensity of the AI agent population and the
speed of liquidity depletion following a sudden negative news shock.

• Month 8 (Regulatory Sandbox): Introduce intervention variables such as Circuit Break-
ers and Transaction Taxes; run Counterfactual Simulations to evaluate the impact of
various regulatory policies on market recovery efficiency.
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6.2.3 Phase 3: Analysis, Writing & Dissemination (Months 9-12)

Focus: Data Analysis & Output Production

• Month 9 (Data Analysis): Process TB-scale simulation log data. Use econometric meth-
ods (such as VAR, GARCH models) to analyze the causal relationship between agent
behavior and market prices.

• Month 10 (Drafting Paper 1): Draft a paper on ”Micro-Behavioral Biases in AI
Agents,” targeting submission to a Fintech special issue of the Journal of Finance (JF)
or the Review of Financial Studies (RFS).

• Month 11 (Drafting Paper 2): Draft a paper on ”Algorithmic Collusion and the Reg-
ulatory Sandbox,” targeting submission to the AI for Finance Workshop at NeurIPS or
ICML.

• Month 12 (Thesis & Open Source): Finalize the PhD thesis proposal/mid-term report;
organize code documentation and publicly release the Agent Trading Arena as Open
Source on GitHub.
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