
CDiff: Bridging Conditional Diffusion and Causal Inference with Statistical Guarantees via Principled Distribution Approximation

Anonymous Authors¹

Abstract

A core challenge in causal inference lies in the fundamental “missing counterfactual” problem: for each unit, only one potential outcome (treated or untreated) is observable. This renders simple comparisons of sample means between treatment groups statistically biased. We present CDiff, a theoretically principled framework for treatment effect estimation under unconfoundedness that leverages recent advances in conditional score-matching diffusion models. Building on statistical learning theory, we formalize how these models’ distribution-approximating capabilities enable accurate estimation of conditional outcome distributions given covariates. Our approach facilitates simultaneous imputation of counterfactual outcomes and estimation of individual treatment effects through principled distribution matching and Monte Carlo sampling. We establish key statistical properties of the proposed estimators: consistency, asymptotic normality, and finite-sample error bounds, enabling direct construction of confidence intervals for hypothesis testing. CDiff advances causal inference methodology by integrating state-of-the-art generative models with rigorous statistical guarantees, with applications ranging from personalized medicine to policy evaluation. Experimental validation across multiple domains demonstrates the framework’s empirical effectiveness.

1. Introduction

Causal inference faces a fundamental identification challenge: the impossibility of observing both potential outcomes (treated and untreated) for any individual. While existing methods address this missing data problem through

assumptions like unconfoundedness, they often rely on restrictive parametric models or fail to scale to complex, high-dimensional data. We propose **CDiff**, a framework that bridges causal inference with modern generative models by leveraging conditional diffusion processes to estimate potential outcome distributions. Our work is motivated by three key observations: (1) diffusion models excel at capturing complex conditional distributions, (2) causal effect estimation inherently requires counterfactual density modeling, and (3) recent advances in score matching provide new theoretical tools for statistical inference. This work makes four advances:

- **Generative Causal Framework:** A conditional diffusion framework that jointly estimates treated/untreated outcome distributions through score matching, enabling simultaneous imputation of counterfactuals and estimation of individual treatment effects (ITE)
- **Theoretical Guarantees:** Finite-sample error bounds for counterfactual prediction, nonparametric convergence rates for potential outcome distributions, and asymptotic normality of the average treatment effect (ATE) estimator with variance characterization
- **Empirical Effectiveness:** State-of-the-art performance across synthetic and real-world benchmarks, significantly outperforming best benchmarks in both ATE and ITE estimation error
- **Generalized Causal Inference:** Extension to unstructured data modalities (images, text, graphs) through differentiable diffusion architectures, overcoming limitations of traditional covariate-based methods

CDiff advances causal methodology by integrating the distribution-approximating power of diffusion models with statistical inference theory. The derived asymptotic variance enables direct construction of confidence intervals for hypothesis testing. Our research demonstrates how deep generative models can overcome longstanding limitations in causal inference.

1.1. Diffusion and Conditional Diffusion Model

The emergence of generative modeling has revolutionized various fields, enabling the development of influential applications in text-to-image and text-to-video generation,

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

such as Stable Diffusion, MidJourney, DALL-E 2, and Firefly (Ramesh et al., 2022; Zhang et al., 2023; Rombach et al., 2022). At the core of these advancements lies the diffusion model, a powerful framework for high-fidelity sample generation. Among these, the Denoising Diffusion Probabilistic Model (DDPM) has become foundational. DDPM leverages variational inference to generate data through a multi-step sampling process. It models a reverse Markov chain to undo a forward diffusion process, wherein incremental noise is added to the original data (e.g., an image) until it becomes pure Gaussian noise (Ho et al., 2020; Sohl-Dickstein et al., 2015). Due to its ability to produce high-quality outputs, DDPM and its variants have quickly set the state of the art across image, audio, and video generation tasks (Dhariwal & Nichol, 2021; Chen et al., 2020; Ho et al., 2022).

One of the most remarkable features of diffusion models is their flexibility to incorporate various forms of input "guidance" to control the generation process. Classifier-free Conditional Diffusion Models (CDMs), for instance, combine conditional and unconditional score estimates to balance sample quality and diversity (Ho & Salimans, 2022a). This adaptability has made diffusion models a versatile tool for generation of various distributions.

The seminal work of Song et al. (2020) provides a unified perspective on various classes of diffusion models, including DDPM and score-based modeling via Langevin Dynamics, by extending these frameworks to a continuous-time formulation. In this formulation, the forward and reverse processes are elegantly described as a stochastic differential equation (SDE) and its corresponding reverse-time SDE, respectively. Subsequent advancements in statistical analysis have rigorously demonstrated that score-matching diffusion models serve as highly effective approximators of probability distributions, offering a strong theoretical foundation for their remarkable success in generative modeling. In particular, progress in conditional score approximation has introduced sample complexity bounds that adapt to the smoothness of the underlying data, achieving near-optimal estimation rates in total variation distance (Oko et al., 2024; Fu et al., 2024).

1.2. Related Work in Causal Inference

A variety of estimators for ATE under the unconfoundedness assumption have been developed in the fields of statistics and econometrics. Many of these estimators rely on nonparametric estimation of the regression function or the propensity score (Hahn, 1998; Hirano et al., 2003; Imbens et al., 2007). These methods derive the asymptotic variance for ATE and construct estimators capable of achieving the semiparametric efficiency bound.

Another significant body of research has focused on estimating ITE. These methods typically take one of two approaches: learning a separate model for each treatment

group or incorporating treatment as an input feature with proper adjustments that account for the imbalance between the treated and control group distributions to mitigate the impact of selection bias. Classical approaches include tree-based methods, such as Bayesian Additive Regression Trees (BART) (Chipman et al., 2012), recursive partitioning (Athey & Imbens, 2016), and Causal Forests (Wager & Athey, 2018). Matching methods have also been widely explored, with techniques like one-to-one matching and propensity score matching being proposed to address selection bias (Dehejia & Wahba, 2002; Crump et al., 2008; Lunceford & Davidian, 2004). In recent years, deep learning has emerged as a powerful tool for ITE estimation. Johansson et al. (2016) and Shalit et al. (2017) introduced frameworks that leverage neural networks to model ITE, incorporating techniques to minimize the discrepancy between the treated and control group distributions. Finally, a multi-task learning approach was developed to estimate counterfactuals by modeling the posterior distribution of outcomes (Alaa & Van Der Schaar, 2017). All these methods share the similar objective as they primarily focus on estimating *conditional expectations* $\mathbb{E}[Y|T, X]$ rather than modeling full outcome distributions.

CDiff fundamentally advances this paradigm by learning the complete conditional density $p(y_0, y_1|x)$ through diffusion dynamics. Prior generative attempts like GANITE (Yoon et al., 2018) suffered from three limitations: (1) inefficiency in learning overlapping outcome distributions due to the innate vulnerability of GAN to mode collapse, (2) requirement for separate networks to impute missing outcomes (counterfactual generator), and estimate treatment effects (ITE generator) (3) absence of theoretical guarantees. In contrast, CDiff's conditional score matching provides stable gradient flows allowing for more efficient approximation of treatment/control outcome distributions (Dhariwal & Nichol, 2021; Song et al., 2020), eliminating need for auxiliary networks and yielding significantly better performance across benchmarks.

The recent DiffPO framework (Ma et al., 2024) shares our use of diffusion models but diverges critically in three aspects. First, architectures: DiffPO employs a single treatment-conditioned model $p(y|t, x)$, while CDiff learns separate but partially shared networks $p(y_0|x), p(y_1|x)$ enabling separate covariate-dependent conditioning. This proves essential as treatment group sizes are often imbalanced (e.g., 1:10 ratio), where shared base layers stabilize small-group learning while treatment-specific heads capture distributional shifts. Second, bias mitigation: DiffPO requires decent estimation of propensity scores $\pi(x)$ via an addition neural network to construct its orthogonal diffusion loss. Accurate learning of nuisance parameter is particularly challenging when x is high-dimensional and unstructured. Lastly, inference guarantees: Where DiffPO

110 provides consistency under correct specifications, CDiff establishes consistency and asymptotic normality of the ATE estimator generously—enabling valid confidence intervals construction without the restrictive Neyman orthogonality assumption. Our theoretical rigor translates to empirical improvements, as CDiff reduces ATE and ITE estimation errors by a significant margin across benchmarks and simulations.

2. Preliminaries

2.1. Problem Formulation

122 Let D_i denote a dummy variable such that $D_i = 1$ if individual i receives the treatment, and $D_i = 0$ otherwise. The 123 potential outcomes are denoted as $Y_i(1)$ and $Y_i(0)$, corresponding to the treated and untreated states, respectively. 124 The observed outcome is thus expressed as $Y_i = D_i Y_i(1) + (1 - D_i) Y_i(0)$. For the identification of treatment effect, we 125 assume *unconfoundedness*: $D_i \perp (Y_i(0), Y_i(1)) \mid X_i$ and 126 overlap $0 < p(D_i = 1 \mid X_i = x) < 1, \forall x$. Below we offer 127 some different definition of treatment effect.

128 **Definition 2.1.** The individual treatment effect (ITE) is 129 defined as

$$\tau(x) \triangleq \mathbb{E}[Y_i(1) - Y_i(0) \mid X_i = x]$$

130 **Definition 2.2.** The average treatment effect (ATE) is 131 defined as

$$\tau_{ATE} \triangleq \mathbb{E}[Y_i(1) - Y_i(0)]$$

132 **Definition 2.3.** The average treatment effect on the treated 133 (ATT) is defined as

$$\tau_{ATT} \triangleq \mathbb{E}[Y_i(1) - Y_i(0) \mid D_i = 1]$$

134 When the true distribution that generates the sample \mathbf{x}, \mathbf{y} , 135 denoted as $p_{gt}(\mathbf{x}, \mathbf{y})$, is known, the goodness of estimation 136 of both ATE and ITE can be measured by the following two 137 metrics:

138 **Definition 2.4.** The absolute error in average treatment 139 effect, or ϵ_{ATE} , is defined as:

$$\epsilon_{ATE} \triangleq \left| \hat{\mathbb{E}}_{Y_i \sim \mu(\mathbf{x}_i)} [Y_i(1) - Y_i(0)] - \hat{\mathbb{E}}_{\hat{Y}_i \sim \mathcal{G}(\mathbf{x}_i)} [\hat{Y}_i(1) - \hat{Y}_i(0)] \right|$$

140 where $\hat{\mathbf{Y}}_i = [\hat{Y}_i(0), \hat{Y}_i(1)]^T$ are outcomes predicted or 141 generated from a learned model \mathcal{G} given the observation \mathbf{x}_i .

142 **Definition 2.5.** The expected precision in estimation of 143 heterogeneous effects, or ϵ_{PEHE} , which according to Hill 144 (2011) is given by:

$$\epsilon_{PEHE} = \mathbb{E}_{\mathbf{x}_i} \left[\left(\mathbb{E}_{Y_i} [Y_i(1) - Y_i(0)] - \mathbb{E}_{\hat{Y}_i \sim \mathcal{G}(\mathbf{x}_i)} [\hat{Y}_i(1) - \hat{Y}_i(0)] \right)^2 \right]$$

145 The statistical and econometric literature traditionally 146 focuses on direct nonparametric estimation of potential 147 outcome expectations. In contrast, we propose a novel 148

149 paradigm centered on learning the complete conditional 150 outcome distributions through diffusion-based density 151 estimation. Formally, we partition the dataset into treatment 152 groups: $\mathcal{S}_{\text{treated}} = \{i : D_i = 1\}$ and $\mathcal{S}_{\text{control}} = \{i : D_i = 0\}$. 153 Using the respective subsets $\{(Y_i, X_i) : i \in \mathcal{S}_{\text{treated}}\}$ and 154 $\{(Y_i, X_i) : i \in \mathcal{S}_{\text{control}}\}$, we train two conditional diffusion 155 models: $g_{1,X}(Y) = \hat{p}(Y(1) \mid X)$ for the treated outcome 156 distribution and $g_{0,X}(Y) = \hat{p}(Y(0) \mid X)$ for the control outcome 157 distribution. Counterfactual imputation proceeds via 158 Monte Carlo sampling for treated units: $\{\hat{Y}_i(0) : \hat{Y}_i(0) \sim g_{0,X_i}(Y), i \in \mathcal{S}_{\text{treated}}\}$. The average treatment effect for the 159 treated is then estimated as:

$$\hat{\tau}_{ATT} = \frac{1}{|\mathcal{S}_{\text{treated}}|} \sum_{i \in \mathcal{S}_{\text{treated}}} (Y_i(1) - \hat{Y}_i(0)).$$

160 Learning the full distribution, rather than just the expectation, 161 offers several advantages. It enables sampling arbitrary 162 counterfactual realizations for quantile estimation and 163 distributional effect analysis, which leads to variance reduction 164 and robust inference. The method's statistical guarantees 165 rely crucially on controlling the distributional estimation 166 error $\|g_{w,X}(Y) - p(Y(w) \mid X)\|$, as will be discussed later.

2.2. Diffusion with Classifier Free Guidance as a Conditional Distribution Learner

167 The goal of conditional diffusion models is to generate samples 168 from the conditional data distribution $p(Y \mid X)$, where 169 P is the probability distribution function and $X \in \mathbb{R}^{d_x}$ is 170 the conditioning information. $Y \in \mathbb{R}^d$ is the dependent variable 171 of our interest. Diffusion model consists of a forward process 172 and a backward process. Song et al. (2020) extends the 173 diffusion framework into continuous time limit, drawing 174 equivalence of forward and backward diffusion process with 175 SDE and reverse-time SDE, respectively. Specifically, the 176 forward process is an Ornstein-Uhlenbeck process:

$$dY_t^x = -\frac{1}{2} Y_t^x dt + dW_t \quad \text{with } Y_0^x \sim P_0(\cdot \mid x)$$

177 where W_t is a Wiener process. At any finite time t , we 178 denote $P_t(\cdot \mid x)$ as the marginal conditional distribution. The 179 forward process will terminate at a sufficiently large time T . 180 For sample generation, the backward process reverses the 181 time in forward process:

$$dY_t^{x,\leftarrow} = \left[\frac{1}{2} Y_t^{x,\leftarrow} + \nabla \log p_{T-t}(Y_t^{x,\leftarrow} \mid x) \right] dt + d\bar{W}_t$$

182 where $Y_0^{\leftarrow} \sim P_T(\cdot \mid x)$ and $\nabla \log p_{T-t}(Y_t^{x,\leftarrow} \mid x)$ is the 183 so-called 'conditional score function', which is the gradient 184 of the log probability density function of P_{T-t} . \bar{W}_t is another 185 Wiener process that is independent of W_t . Both the 186 score function $\nabla \log p_t$ and the distribution p_T are unknown,

however, we know $\lim_{T \rightarrow \infty} Y_T^x \sim \mathcal{N}(0, I)$. We replace the unknown distribution p_T by the standard Gaussian distribution and denote $\hat{s}(y, x, t)$ as an estimator for $\nabla \log p_t(y|x)$. The estimated score \hat{s} is often parameterized by a deep neural network and takes data, conditional information and time as inputs. The conditional sample generation is to simulate the following backward process

$$d\tilde{Y}_t^{x, \leftarrow} = \left[\frac{1}{2} \tilde{Y}_t^{x, \leftarrow} + \hat{s}(\tilde{Y}_t^{x, \leftarrow}, y, T-t) \right] dt + d\bar{W}_t,$$

where $\tilde{Y}_0^{x, \leftarrow} \sim \mathcal{N}(0, I)$. Denote the distribution of $\tilde{Y}_t^{x, \leftarrow}$ conditioned on x as $\tilde{P}_{T-t}(\cdot|x)$. We use deep neural networks to estimate the conditional score function and a conceptual quadratic loss is defined as:¹

$$\arg \min_{s \in \mathcal{S}} \int_{t_0}^T w(t) \mathbb{E}_{y_t, x} [\|s(y_t, x, t) - \nabla \log p_t(y_t|x)\|_2^2] dt,$$

where $w(t)$ is a time dependent reweighting function, for instance, $w(t) = \frac{1}{T}$. \mathcal{S} is a class of deep neural networks. However, such an objective function is not computable using samples, as the score function $\nabla \log p_t$ is unknown. Instead, we minimize the following objective function,

$$\int_{t_0}^T w(t) \mathbb{E}_{y_0, x} [\mathbb{E}_{y_t} [\|\nabla_{y_t} \log \phi_t(y_t|y_0) - s(y_t, x, t)\|_2^2]] dt.$$

Here $\phi_t(y_t|y_0)$ denotes the Gaussian transition kernel of the forward process, so that $\nabla_{y_t} \log \phi_t$ admits an analytical form

$$\nabla_{y_t} \log \phi_t(y_t|y_0) = -\frac{y_t - \alpha(t)y_0}{h(t)}$$

where $\alpha(t) = e^{-\frac{1}{2}t}$ and $h(t) = 1 - e^{-t}$. If the true distribution P_0 is smooth enough, then there exists a ReLU neural network that can consistently estimate the conditional score function. In practice, we collect data $\{y_i, x_i\}_{i=1}^n$ and minimize the empirical risk (Ho & Salimans, 2022b)

$$\hat{s} = \arg \min_{s \in \mathcal{S}} \hat{\mathcal{L}}(s), \quad \hat{\mathcal{L}}(s) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, x_i; s),$$

where $\ell(y_i, x_i; s)$ is given by

$$\int_{t_0}^T \frac{1}{T} \mathbb{E}_{y \sim \mathcal{N}(\alpha_t, \sigma_t^2 I)} [\|s(y, x, t) - \nabla_y \log \phi_t(y_t|y_0)\|_2^2] dt.$$

We measure the quality of the estimator \hat{s} by its mean-squared deviation to the true conditional score function

$$\mathcal{R}(\hat{s}) = \int_{t_0}^T \frac{1}{T} \mathbb{E}_{y_t, x} \|\hat{s}(y_t, x, t) - \nabla \log p_t(y_t|x)\|_2^2 dt.$$

Under some regular conditions, this mean-squared deviation converges to zero in probability. Given the trained conditional score network $\hat{s}(y, x, t)$, we obtain the estimated

¹ t_0 is an early-stopping time to prevent the blow-up of score functions.

conditional distribution $\hat{P}_0(\cdot|x)$. If the KL divergence of the original distribution $P(\cdot|x)$ is bounded, then the estimated distribution converges to the true distribution in the sense of total variance.

2.3. Theoretical Results for Distribution Approximation

Fu et al. (2024) presents a sharp statistical theory of distribution estimation using conditional diffusion models. The key to the theoretical complexity bound lies in an approximation result for the conditional score function, which is shown in Theorem 2.6.

Suppose the conditional distribution has a density $p(y|x) \in \mathcal{H}^\beta(B)$ for a Holder index β and constant B (see Appendix A.1). Moreover, there exist constants C_1, C_2 such that for all x , the density function $p(y|x) \leq C_1 e^{-\frac{1}{2}C_2\|y\|_2^2}$.

Theorem 2.6 (Conditional Score Function Approximation). *For the class of ReLU score network (see Appendix A.2), if we choose the parameters, stopping time and terminal time appropriately (also see Appendix A.2), then*

$$E_{\{x_i, y_i\}_{i=1}^n} \mathcal{R}(\hat{s}) = \mathcal{O} \left(\frac{1}{t_0} n^{-\frac{\beta}{d+d_x+\beta}} (\log n)^{\max(17, d+\frac{\beta}{2}+1)} \right)$$

Given a conditional score network $\hat{s}(y, x, t)$, we establish quantifiable bounds on distribution estimation accuracy. For a given covariate vector x , let $\hat{P}(\cdot|x)$ denote the generated distribution obtained through early-stopped diffusion sampling using the estimated score \hat{s} . The following theorem bounds the total variation (TV) distance between the learned distribution $\hat{P}(\cdot|x)$ and the true conditional distribution $P(\cdot|x)$, providing rigorous quality guarantees:

Theorem 2.7. *Assume in addition that there exists a constant C such that $KL(P(\cdot|y)|\mathcal{N}(0, I)) \leq C < \infty$ for all y . Taking the early-stopping time $t_0 = n^{-\frac{\beta}{4(d+d_x+\beta)}}$ and the terminal time $T = \frac{2\beta}{d+d_x+2\beta} \log n$, it holds that*

$$\mathbb{E}_{\{y_i, x_i\}_{i=1}^n} \mathbb{E}_x \left(TV(\hat{P}_{t_0}(\cdot|x), P(\cdot|x)) \right) = \mathcal{O} \left(n^{-\frac{\beta}{4(d+d_x+\beta)}} (\log n)^{\max(9, \frac{d}{2}+\frac{\beta}{4}+1)} \right)$$

These theorems lay down critical theoretical foundations for using diffusion models in causal inference. By guaranteeing accurate approximation of conditional outcome distributions, it enables reliable estimation of the ATE and related causal quantities. In Section 3, we further prove that treatment effect estimators derived through this framework achieve both consistency and asymptotic normality.

3. Model and Estimator

3.1. Treatment Effect Estimator and Properties

To estimate the individual treatment effect $\tau(x)$, we first learn the conditional distribution $f(X|W)$ using the full

sample, obtaining $\hat{f}(X|W)$. We generate n synthetic covariates $\{X_i^G\}_{i=1}^n$ via the mapping: $X_i^G = h(W_i)$, where $h(\cdot)$ corresponds to the conditional network $\hat{f}(X|\cdot)$. In practice, this step can be omitted if n is sufficiently large to approximate the population distribution, or the support of interest \mathcal{X} is fully covered by the observed sample $\{X_i\}_{i=1}^n$. This paper will focus on this case.

Core Estimation Procedure Assuming access to n observations $\{(X_i, Y_i)\}_{i=1}^n$, we generate n^G counterfactual pairs for each $X_i = x$ based on density $(Y_i^G(0)|X_i = x) \sim g_{0,X}(Y)$ and $(Y_i^G(1)|X_i = x) \sim g_{1,X}(Y)$, where $g_{0,X}(Y)$ and $g_{1,X}(Y)$ represent conditional outcome density functions that are *separately learned* via conditional diffusion models. For notation simplicity we write $(Y_i^G(0), Y_i^G(1)|X_i = x) = (Y_{i,x}^G(0), Y_{i,x}^G(1))$. The individual treatment effect estimator is then:

$$\hat{\tau}^G(x) = \frac{1}{n^G} \sum_{i=1}^{n^G} (Y_{i,x}^G(1) - Y_{i,x}^G(0)).$$

Here we propose our main theorems, which substantiate that a framework based on conditional diffusion models can be effective in estimating treatment effects. Detailed proofs can be found in Appendix B. For asymptotic analysis, we replace G by G_n to indicate that the generated pairs $(Y_{i,x}^{G_n}(0), Y_{i,x}^{G_n}(1))$ also depends on the sample size n .

Theorem 3.1. *Suppose assumptions in 2.7 holds and we obtain an estimator $\hat{\tau}^G$ for the treatment effect based on the score network in 2.6. Then the convergence rate of $\hat{\tau}^{G_n}(x)$ is*

$$|\hat{\tau}^{G_n}(x) - \tau(x)| = O((n^G)^{-\frac{1}{2}}) + O\left(n^{-\frac{\beta}{4(d+d_x+\beta)}} (\log n)^{\max(9, \frac{d}{2} + \frac{\beta}{4} + 1)}\right).$$

For asymptotic analysis, let both n and n^G go to infinity and $n^G = n^{\frac{1}{2}}$, then consistency and asymptotical normality are obtained, i.e.

$$\lim_{n \rightarrow \infty} \lim_{n^G \rightarrow \infty} \hat{\tau}^{G_n}(x) = \tau(x)$$

$$\sqrt{n^G}(\hat{\tau}^{G_n}(x) - \tau(x)) \xrightarrow{d} \mathcal{N}(0, V_x)$$

where $V_x = \mathbb{E}(Y_{i,x}(1) - Y_{i,x}(0))^2 - (\mathbb{E}[Y_{i,x}(1) - Y_{i,x}(0)])^2$

So τ_{ATE} can be consistently estimated as $\hat{\tau}^{G_n} = \frac{1}{n} \sum_{x \in \{X_k\}_{k=1}^n} \hat{\tau}^{G_n}(x)$. We now propose the following theorem for statistical inference for ATE, which is crucial as it quantifies the average effectiveness of a policy or treatment on a population..

Theorem 3.2 (Asymptotic Properties of ATE Estimator). *Let $V_x^{G_n} \triangleq \mathbb{E}\left[\left(Y_{i,x}^{G_n}(1) - Y_{i,x}^{G_n}(0) - \tau(x)\right)^2\right]$ denote the conditional variance of individual treatment effects. Assuming standard regularity, ATE estimator satisfies:*

(i) **Consistency:** $\hat{\tau}^{G_n} \xrightarrow{p} \tau$ as $n, n^G \rightarrow \infty$

(ii) **Asymptotic Normality:**

$$\sqrt{\frac{n}{n^G}} (\hat{\tau}^{G_n} - \tau) / \sqrt{\frac{1}{n} \sum_{x \in \{X_k\}_{k=1}^n} V_x^{G_n}} \xrightarrow{d} \mathcal{N}(0, 1)$$

where the variance estimator

$$\hat{V}_x^{G_n} \triangleq \frac{1}{n^G} \sum_{i=1}^{n^G} \left(Y_{i,x}^{G_n}(1) - Y_{i,x}^{G_n}(0) - \hat{\tau}^{G_n}(x) \right)^2$$

is consistent: $\hat{V}_x^{G_n} \xrightarrow{p} V_x^{G_n}$.

Theorem 3.2 allows for construction of confidence interval for ATE.

Definition 3.3 (Confidence Intervals). Let $z_{1-\alpha/2}$ denote the $(1 - \alpha/2)$ -quantile of the standard normal distribution. Given the variance estimator (1), define the standard error:

$$\hat{\sigma}_n \triangleq \sqrt{\frac{1}{n} \sum_{x \in \{X_k\}_{k=1}^n} V_x^{G_n}}$$

The $(1 - \alpha)$ -confidence interval ($CI_{1-\alpha}$) for τ is given by

$$\left[\hat{\tau}^{G_n} - z_{1-\alpha/2} \cdot \hat{\sigma}_n \sqrt{\frac{n^G}{n}}, \hat{\tau}^{G_n} + z_{1-\alpha/2} \cdot \hat{\sigma}_n \sqrt{\frac{n^G}{n}} \right].$$

3.2. Model Architecture

We formally present **CDiff**, a conditional score-based diffusion framework that jointly learns counterfactual distributions $P(Y(0)|X)$ and $P(Y(1)|X)$ through shared representation learning. Building on conditional denoising diffusion framework, CDiff extends the score-matching objective to leverage structural similarities between treatment arms while preserving causal identifiability.

As shown in Fig. 1, CDiff employs: 1) A **shared condition block** that encodes treatment-invariant features from covariates X , and 2) **Parallel counterfactual condition heads** that *separately* learn treatment-specific score functions ϵ_0, ϵ_1 via conditionally modulated denoising. Within each block, CDiff deploys the **Condition Merge Modules** that combines covariate information with diffusion time-step embeddings:

$$h^{(l+1)} = \text{BN}(\text{GELU}(\mathbf{W}_l[h^{(l)} \oplus \mathcal{T}(X)])),$$

where $\mathcal{T}(\cdot)$ denotes cosine embeddings for continuous/binary covariates and \oplus is feature concatenation.

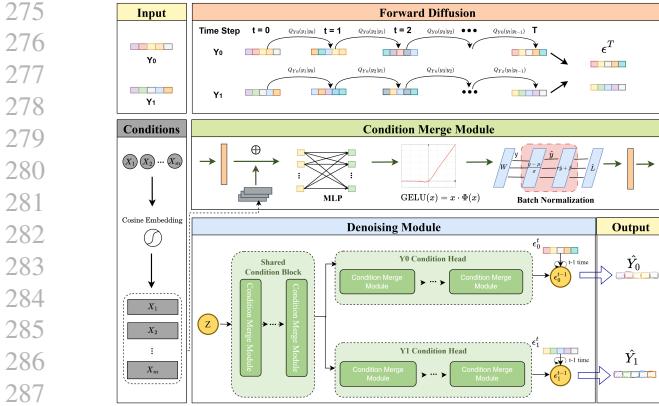


Figure 1. A Diagram of CDiff

For each treatment $w \in \{0, 1\}$, CDiff learns the score function $\epsilon_w(t, Y(w), X)$ via:

$$\epsilon_w^t = s_\theta(t, Y(w)^t, X),$$

where $Y(w)^t$ is the noisified outcome at diffusion step t . The shared encoder enables information transfer between treatment arms through:

$$\mathcal{L}_\theta = \sum_{w=0}^1 \mathbb{E}_{t, Y(w), X} \left[\|\epsilon_w^t - \nabla_{Y(w)^t} \log p_t(Y(w)^t | X)\|_2^2 \right].$$

Starting from Gaussian noise $Y(w)^T \sim \mathcal{N}(0, I)$, CDiff iteratively denoises outcomes using ancestral sampling:

$$Y(w)^{t-1} = \mu_\theta(Y(w)^t, t, X) + \sigma_t \xi, \quad \xi \sim \mathcal{N}(0, I),$$

where μ_θ combines the learned score ϵ_w^t with scheduled noise levels $\{\sigma_t\}_{t=1}^T$.

4. Simulations

In the first simulation, we evaluate the performance of our model on a synthetic dataset inspired by the setup in Yoon et al. (2018). Specifically, we generate 10,000 10-dimensional feature vectors, \mathbf{x} , sampled from $\mathcal{N}(\mathbf{0}, \Sigma^2)$, where $\Sigma = 0.5 \times (\Omega + \Omega^T)$ and $\Omega \sim \mathcal{U}((-1, 1)^{10 \times 10})$. The outcome \mathbf{y} conditional on observation \mathbf{x} is given by $\mathbf{y} = \mathbf{w}_y^T \mathbf{x} + \mathbf{n}_y$, where $\mathbf{w}_y^T \sim \mathcal{U}((-0.1, 0.1)^{10 \times 2})$, and $\mathbf{n}_y \sim \mathcal{N}(\mathbf{0}^{2 \times 1}, 0.1^2 \times I^{2 \times 2})$. Similar to Yoon et al. (2018)'s approach, we evaluate the robustness of our model against various levels of selection bias, by comparing with various benchmarks. We generate 10,000 treated or control samples from $\mathbf{x}_1 \sim \mathcal{N}(\mu_1, \Sigma^2)$ or $\mathbf{x}_0 \sim \mathcal{N}(\mu_0, \Sigma^2)$, respectively. For each trial, μ_0 is fixed and we vary μ_1 to generate data with different levels of selection bias, as measured by Kullback-Leibler divergences (KL divergences) between distribution of \mathbf{x}_0 and \mathbf{x}_1 . As is shown in Figure 2, Our model outperforms some of the best benchmarks (GANITE and DiffPO) across levels of selection bias.



Figure 2. Estimation of ϵ_{PEHE} under various levels of selection bias. We selected four levels of KL-Divergence, corresponding to zero, low, medium or high selection bias. The table reports the mean and standard deviation (STD) from 100 independent trials.

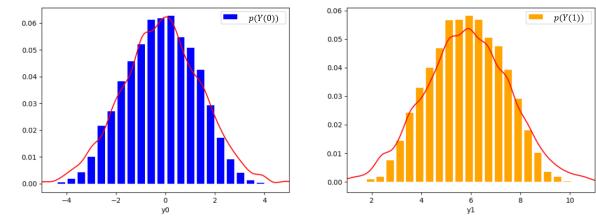


Figure 3. CDiff-generated samples (colored histograms) versus ground truth $Y(w)$ distributions (red curves).

Figure 3 showcases CDiff's ability to recover ground-truth potential outcome distributions under high selection bias, demonstrating almost complete alignment between generated distributions and ground truth. This is true for both treatment arms and control arms. The ability for CDiff to approximate true conditional density ($p(Y(0)|X)$ and $p(Y(1)|X)$) is demonstrated in Appendix D.

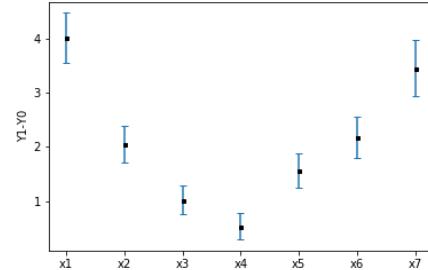


Figure 4. True ITE and predicted confidence intervals. Blue bars show 95% CIs for different x values (black dots: true $\tau(x)$).

Finally, we validate CDiff's asymptotic guarantees via sampling across the covariate space \mathcal{X} , selecting seven x with ground truth ITE $\tau(x) \in [0.5, 4]$. Following Def. 3.3, we construct 95% confidence intervals ($\text{CI}_{95\%}$) for each $\tau(x)$ through 10^2 Monte Carlo trials. Figure 4 demonstrates statistically tight coverage as 100% of CIs contain $\tau(x)$ (mean interval width 0.36 ± 0.09).

330 5. Experiments

331 5.1. Datasets

333 To address the challenge that counterfactual outcomes are
 334 unobservable in real-world settings, we followed the stan-
 335 dard approach used by many previous studies (Chipman
 336 et al., 2012; Shalit et al., 2017; Alaa & Van Der Schaar,
 337 2017; Yoon et al., 2018), evaluating our method on the semi-
 338 synthetic IHDP dataset and the real-world Jobs dataset.
 339

340 **IHDP** The Infant Health and Development Program
 341 (IHDP) dataset (Hill, 2011) is widely used for the ITE es-
 342 timation. It consists of 747 instances (139 treated, 608
 343 controls) with 25-dimensional covariates. The outcome val-
 344 ues were *synthesized* using the NPCI package under setting
 345 ‘A’, as implemented by Dorie (2016).

347 **Jobs** The Jobs dataset, developed by LaLonde (1986), is a
 348 widely used *real-life* benchmark for causal effect estimation.
 349 It features a randomized study conducted by the National
 350 Supported Work program, with 297 treated and 425 con-
 351 trol samples. Observational data (the PSID group, 2490
 352 controls) was later added by Smith & Todd (2005). The
 353 treatment corresponds to receiving job training, while the
 354 observed outcomes are income and employment status.
 355

356 Since counterfactual outcomes are unobservable, two evalua-
 357 tion metrics are commonly used for this dataset: the error of
 358 the average treatment effect on the treated (ϵ_{ATT}) and
 359 the policy risk ($\hat{R}_{pol}(\pi_f)$). According to Shalit et al. (2017)
 360 and Smith & Todd (2005), the true τ_{ATT} is defined as:

$$361 \tau_{ATT} = \frac{1}{|T_1 \cap E|} \sum_{\mathbf{x}_i \in T_1 \cap E} Y_1(\mathbf{x}_i) - \frac{1}{|T_0 \cap E|} \sum_{\mathbf{x}_i \in T_0 \cap E} Y_0(\mathbf{x}_i),$$

364 where T_1 and T_0 are the treated and control groups, respec-
 365 tively, and E is the randomized controlled trial subset. The
 366 empirical estimate of ϵ_{ATT} is given by:

$$368 \hat{\epsilon}_{ATT} = |\tau_{ATT} - \frac{1}{|T_1 \cap E|} \sum_{\mathbf{x}_i \in T_1 \cap E} \hat{Y}_1(\mathbf{x}_i) - \hat{Y}_0(\mathbf{x}_i)|.$$

371 The policy risk, another metrics that evaluates treatment
 372 assignment policies, is given by:

$$374 \hat{R}_{pol}(\pi_f) = 1 - (\mathbb{E}[Y_1 | \pi_f(\mathbf{x}) = 1, t = 1] \cdot p(\pi_f = 1)) \\ 375 \quad + \mathbb{E}[Y_0 | \pi_f(\mathbf{x}) = 0, t = 0] \cdot p(\pi_f = 0).$$

377 5.2. Results

379 On both datasets, we evaluate the in-sample and out-of-
 380 sample estimations of τ_{ATE} and τ_{ATT} from our model
 381 against several benchmark models. The baselines include
 382 Balancing Linear Regression (BLR) and Balancing Neu-
 383 ral Network (BNN) (Johansson et al., 2016), k-Nearest
 384

Dataset	IHDP ($\hat{\epsilon}_{ATE}$)		Jobs ($\hat{\epsilon}_{ATT}$)		
	Methods	In-sample	Out-sample	In-sample	Out-sample
CDiff	.09 ± .02	.12 ± .02	.01 ± .01	.04 ± .01	
DiffPO	.47 ± .04	.59 ± .05	.05 ± .02	.09 ± .04	
GANITE	.43 ± .05	.49 ± .05	.01 ± .01	.06 ± .03	
BLR	.72 ± .04	.93 ± .05	.01 ± .01	.08 ± .03	
BNN	.37 ± .03	.42 ± .03	.04 ± .01	.09 ± .04	
k-NN	.14 ± .01	.90 ± .05	.21 ± .01	.13 ± .05	
BART	.23 ± .01	.34 ± .02	.02 ± .00	.08 ± .03	
C Forest	.18 ± .01	.40 ± .03	.03 ± .01	.07 ± .03	
TARNET	.26 ± .01	.28 ± .01	.05 ± .02	.11 ± .04	
CFR _{Wass}	.25 ± .01	.27 ± .01	.04 ± .01	.09 ± .03	
CMGP	.11 ± .10	.13 ± .12	.06 ± .06	.09 ± .07	

Table 1. Estimation errors of τ_{ATE} and τ_{ATT} on IHDP and Jobs datasets, featuring comparison between our model and current SOTAs. Mean and STD values are computed over multiple independent runs. The best results are highlighted in **bold**.

Neighbors (k-NN) (Crump et al., 2008), Bayesian Additive Regression Trees (BART) (Chipman et al., 2012), Causal Forests (C Forest) (Wager & Athey, 2018), Treatment-Agnostic Representation Network (TARNET), Counterfactual Regression with Wasserstein Distance (CFR_{Wass}) (Shalit et al., 2017), Multi-task Gaussian Process (CMGP) (Alaa & Van Der Schaar, 2017), GANITE (Yoon et al., 2018), and DiffPO (Ma et al., 2024).

Table 1 demonstrates CDiff’s superiority in estimating population-level treatment effects (τ_{ATE} , τ_{ATT}) on IHDP and Jobs datasets. Our framework achieves SOTA out-of-sample performance over all benchmarks, across both datasets (the difference is statistically significant $p < 0.05$ except for the highly volatile CMGP). While CDiff shows substantial in-sample improvements on IHDP, its Jobs in-sample performance is on par with the best benchmark models (GANITE and BLR).

We further evaluate CDiff using two alternative metrics: the expected precision in heterogeneous effect estimation (ϵ_{PEHE}) and policy risk ($R_{pol}(\pi_f)$). As shown in Table 2, CDiff demonstrates superior policy risk minimization, achieving a 30% reduction in out-of-sample $R_{pol}(\pi_f)$ compared to the second-best benchmark, GANITE ($p < 0.05$). While CDiff significantly outperforms most benchmarks on ϵ_{PEHE} (e.g., GANITE, BART, and Causal Forest; $p < 0.05$), it exhibits modest gaps to CMGP, TARNET, and CFR_{Wass}. This reflects CDiff’s implicit tradeoff: a slight performance degradation in extreme quantiles for over performance at population-level (ATE). ϵ_{PEHE} , as sum of point-wise squared-errors, inherently favors point-estimate methods like CMGP and TARNET that prioritize local accuracy.

In summary, across diverse evaluation scenarios—spanning simulation, semi-synthetic, and real-world datasets with varying sample sizes (1,000–10,000 units), selection bias,

Dataset	IHDP ($\sqrt{\hat{\epsilon}_{PEHE}}$)		Jobs ($\hat{R}_{pol}(\pi_f)$)	
Methods	In-sample	Out-sample	In-sample	Out-sample
CDiff	1.7 ± .2	1.8 ± .3	.08 ± .01	.11 ± .01
DiffPO	2.8 ± .2	3.1 ± .4	.19 ± .02	.22 ± .03
GANITE	1.9 ± .4	2.4 ± .4	.13 ± .01	.14 ± .01
BLR	5.8 ± .3	5.8 ± .3	.22 ± .01	.25 ± .02
BNN	2.2 ± .1	2.1 ± .1	.20 ± .01	.24 ± .02
k-NN	2.1 ± .1	4.1 ± .2	.22 ± .00	.26 ± .02
BART	2.1 ± .1	2.3 ± .1	.23 ± .00	.25 ± .02
C Forest	3.8 ± .2	3.8 ± .2	.19 ± .00	.20 ± .02
TARNET	.88 ± .02	.95 ± .02	.17 ± .01	.21 ± .01
CFR _{Wass}	.71 ± .02	.76 ± .02	.17 ± .02	.21 ± .01
CMGP	.65 ± .44	.77 ± .11	.17 ± .03	.24 ± .05

Table 2. **Estimation of ϵ_{PEHE} or $R_{pol}(\pi)$ on IHDP and Jobs datasets**, featuring comparison between our model and current SOTAs. Mean and STD values are computed over multiple independent runs. The best results are highlighted in **bold**.

and treatment group imbalances (1:5 to 1:10)—CDiff achieves statistically significant superiority in 14 of 16 cases (88%). This includes consistent first-rank performance on both population-level (ATE/ATT) and individual-level (ITE) metrics under in-sample and out-of-sample regimes. The framework balances between asymptotic quality for ATE and high precision in ITE, positioning itself as a versatile tool for both large-scale policy evaluation and individual intervention optimization.

5.3. Discussion

Ablation Study To understand the contributions of individual components in our framework, we perform ablation studies on IHDP by systematically modifying key elements of the model. Additional ablation results are presented in Appendix D.

Noise Formulation Table 3 compares three approaches: 1) CDiff: Joint prediction of $\epsilon_0^t, \epsilon_1^t$ via parallel heads; 2) $\Delta noise$: Predicts ϵ_0^t and residual $\Delta\epsilon^t = \epsilon_1^t - \epsilon_0^t$; 3) $Y_1 - Y_0$: Separate diffusion of $Y_0/(Y_1 - Y_0)$ with scores $\epsilon_0^t, \epsilon_{1-0}^t$. CDiff significantly over-performs the other two types of residual-like formulations, demonstrating that joint modeling of potential outcomes improves distribution matching by leveraging covariate-outcome dependencies.

Architecture Configuration Table 4 evaluates layer allocation between shared and treatment-specific modules, where $A+B$ denotes A stacks of Condition Merge Modules in Shared Condition Block and B stacks in Y_0/Y_1 Condition Heads. CDiff’s balanced configuration (2+2) achieves optimal performance among all configurations. In particular, the 0+4 variant (fully independent heads) exhibits the worst performance, underscoring the benefits of shared represen-

Dataset	IHDP ($\hat{\epsilon}_{ATE}$)		IHDP ($\sqrt{\hat{\epsilon}_{PEHE}}$)	
Methods	In-sample	Out-sample	In-sample	Out-sample
CDiff	.09 ± .02	.12 ± .02	1.7 ± .2	1.8 ± .3
$\Delta noise$.21 ± .05	.28 ± .07	2.5 ± .6	2.9 ± .8
$Y_1 - Y_0$.12 ± .03	.16 ± .04	2.1 ± .3	2.6 ± .5

Table 3. **Ablation studies on IHDP of different learning target for two heads**. Mean and STD values are computed over multiple independent runs.

Dataset	IHDP ($\hat{\epsilon}_{ATE}$)		IHDP ($\sqrt{\hat{\epsilon}_{PEHE}}$)	
Methods	In-sample	Out-sample	In-sample	Out-sample
3 + 1	.12 ± .02	.16 ± .02	1.9 ± .2	2.0 ± .3
2 + 2 (CDiff)	.09 ± .02	.12 ± .02	1.7 ± .2	1.8 ± .3
1 + 3	.17 ± .03	.22 ± .04	2.1 ± .3	2.3 ± .4
0 + 4	.25 ± .07	.33 ± .11	2.8 ± .4	3.1 ± .6

Table 4. **Ablation studies on IHDP of different shared module stacks (Shared Stacks + Unshared Stacks)**. Mean and STD values are computed over multiple independent runs.

tations in capturing inherent counterfactual dependencies for the same covariates.

Future Directions Several future extensions merit investigation: (1) Generalization to $K > 2$ treatments through parallel denoising heads (see Appendix), preserving parameter efficiency via shared base layers while maintaining the original loss structure. (2) Adaptation to multi-modal data (text, graphs, images) through modality-specific encoders, building on works by Veitch et al. (2020) and Jerzak et al. (2022). (3) Systematic evaluation of estimation robustness under non-Euclidean data geometries. (4) Development of model compression techniques (distillation/quantization) to enhance efficiency without losing statistical rigor.

6. Conclusion

We present CDiff, a causal inference framework that synergizes diffusion-based conditional density estimation with statistics theory. By reformulating counterfactual prediction as a score-matching problem, CDiff achieves: (1) consistent and asymptotically normal ATE estimates under standard regularity conditions, (2) finite-sample error bounds for both ATE and ITE predictions, and (3) SOTA empirical performance across benchmarks with statistical significance. The framework’s robustness to strong selection bias, as demonstrated through empirical tests, positions it as a versatile tool for high-stakes applications ranging from personalized immunotherapy design to algorithmic fairness auditing. CDiff advances causal machine learning by demonstrating how modern generative models can transcend their traditional descriptive role to enable principled counterfactual reasoning.

440
441 **Statement of Impacts**
442

443 CDiff represents a paradigm shift in causal inference,
444 unifying deep generative modeling with statistical the-
445 ory to address the core challenge of counterfactual esti-
446 mation. By leveraging conditional score-matching dif-
447 fusion, CDiff achieves unprecedented accuracy in learn-
448 ing potential outcome distributions, enabling robust es-
449 timation of both population-level effects (ATE/ATT)
450 and individualized treatment responses (ITE). Its SOTA
451 performance across synthetic and real-world bench-
452 marks—including high-dimensional healthcare and pol-
453 icy evaluation datasets—demonstrates practical value for
454 decision-making under uncertainty. The framework’s the-
455 oretical guarantees (consistency, asymptotic normality) di-
456 rectly enable confidence interval construction, bridging the
457 gap between machine learning flexibility and statistical rigor
458 required for high-stakes applications.

459
460 **References**
461

462 Alaa, A. M. and Van Der Schaar, M. Bayesian inference of
463 individualized treatment effects using multi-task gaussian
464 processes. *Advances in neural information processing systems*, 30, 2017.

465 Athey, S. and Imbens, G. Recursive partitioning for het-
466 erogeneous causal effects. *Proceedings of the National
467 Academy of Sciences*, 113(27):7353–7360, 2016.

468 Chen, N., Zhang, Y., Zen, H., Weiss, R. J., Norouzi, M., and
469 Chan, W. Wavegrad: Estimating gradients for waveform
470 generation. *arXiv preprint arXiv:2009.00713*, 2020.

471 Chipman, H. A., George, E. I., and McCulloch, R. E. Bart:
472 Bayesian additive regression trees. *Annals of Applied
473 Statistics*, 6(1):266–298, 2012.

474 Crump, R. K., Hotz, V. J., Imbens, G. W., and Mitnik, O. A.
475 Nonparametric tests for treatment effect heterogeneity.
476 *The Review of Economics and Statistics*, 90(3):389–405,
477 2008.

478 Dehejia, R. H. and Wahba, S. Propensity score-matching
479 methods for nonexperimental causal studies. *Review of
480 Economics and statistics*, 84(1):151–161, 2002.

481 Dhariwal, P. and Nichol, A. Diffusion models beat gans
482 on image synthesis. *Advances in Neural Information
483 Processing Systems*, 34:8780–8794, 2021.

484 Dorie, V. Non-parametrics for causal inference, 2016.

485 Fu, H., Yang, Z., Wang, M., and Chen, M. Unveil condi-
486 tional diffusion models with classifier-free guidance: A
487 sharp statistical theory. *arXiv preprint arXiv:2403.11968*,
488 2024.

489 Györfi, L., Kohler, M., Krzyzak, A., and Walk, H. *A
490 distribution-free theory of nonparametric regression*.
491 Springer Science & Business Media, 2006.

492 Hahn, J. On the role of the propensity score in efficient
493 semiparametric estimation of average treatment effects.
494 *Econometrica*, 66(2):315–331, 1998.

495 Hill, J. L. Bayesian nonparametric modeling for causal infe-
496 rence. *Journal of Computational and Graphical Statistics*,
497 20(1):217–240, 2011.

498 Hirano, K., Imbens, G. W., and Ridder, G. Efficient es-
499 timation of average treatment effects using the estimated
500 propensity score. *Econometrica*, 71(4):1161–1189, 2003.

501 Ho, J. and Salimans, T. Classifier-free diffusion guidance.
502 *arXiv preprint arXiv:2207.12598*, 2022a.

503 Ho, J. and Salimans, T. Classifier-free diffusion guidance.
504 *arXiv preprint arXiv:2207.12598*, 2022b.

505 Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
506 bilistic models. *Advances in Neural Information Process-
507 ing Systems*, 33:6840–6851, 2020.

508 Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi,
509 M., and Fleet, D. J. Video diffusion models.
510 *arXiv:2204.03458*, 2022.

511 Imbens, G. W., Newey, W., and Ridder, G. Mean squared
512 error calculations for average treatment effects. *Working
513 Paper*, 2007.

514 Jerzak, C. T., Johansson, F., and Daoud, A. Image-
515 based treatment effect heterogeneity. *arXiv preprint
516 arXiv:2206.06417*, 2022.

517 Johansson, F., Shalit, U., and Sontag, D. Learning repre-
518 sentations for counterfactual inference. In *International
519 conference on machine learning*, pp. 3020–3029. PMLR,
520 2016.

521 LaLonde, R. J. Evaluating the econometric evaluations of
522 training programs with experimental data. *The American
523 economic review*, pp. 604–620, 1986.

524 Lunceford, J. K. and Davidian, M. Stratification and weight-
525 ing via the propensity score in estimation of causal treat-
526 ment effects: a comparative study. *Statistics in medicine*,
527 23(19):2937–2960, 2004.

528 Ma, Y., Melnychuk, V., Schweisthal, J., and Feuerriegel,
529 S. Diffpo: A causal diffusion model for learning
530 distributions of potential outcomes. *arXiv preprint
531 arXiv:2410.08924*, 2024.

532 Oko, K., Akiyama, S., and Suzuki, T. Diffusion models are
533 minimax optimal distribution estimators. *Working Paper*,
534 2024.

495 Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M.
496 Hierarchical text-conditional image generation with clip
497 latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

498 Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
499 Ommer, B. High-resolution image synthesis with latent
500 diffusion models. In *Proceedings of the IEEE/CVF con-*
501 *ference on computer vision and pattern recognition*, pp.
502 10684–10695, 2022.

503

504 Shalit, U., Johansson, F. D., and Sontag, D. Estimating
505 individual treatment effect: generalization bounds and
506 algorithms. In *International conference on machine learn-*
507 *ing*, pp. 3076–3085. PMLR, 2017.

508

509 Smith, J. A. and Todd, P. E. Does matching overcome
510 Lalonde’s critique of nonexperimental estimators? *Jour-*
511 *nal of econometrics*, 125(1-2):305–353, 2005.

512

513 Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
514 Ganguli, S. Deep unsupervised learning using nonequi-
515 librium thermodynamics. In *International Conference on*
516 *Machine Learning*, pp. 2256–2265. PMLR, 2015.

517

518 Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
519 mon, S., and Poole, B. Score-based generative modeling
520 through stochastic differential equations. In *International*
521 *Conference on Learning Representations*, 2020.

522

523 Veitch, V., Sridhar, D., and Blei, D. Adapting text embed-
524 dings for causal inference. In *Conference on Uncertainty*
525 *in Artificial Intelligence*, pp. 919–928. PMLR, 2020.

526

527 Wager, S. and Athey, S. Estimation and inference of hetero-
528 geneous treatment effects using random forests. *Journal*
529 *of the American Statistical Association*, 113(523):1228–
1242, 2018.

530

531 Yoon, J., Jordon, J., and Van Der Schaar, M. Ganite: Estima-
532 tion of individualized treatment effects using generative
533 adversarial nets. In *International conference on learning*
534 *representations*, 2018.

535

536 Zhang, C., Zhang, C., Zhang, M., and Kweon, I. S. Text-to-
537 image diffusion models in generative ai: A survey. *arXiv*
538 *preprint arXiv:2303.07909*, 2023.

539

540

541

542

543

544

545

546

547

548

549

A. Definitions and Assumptions

Definition A.1 (Hölder norm). The Hölder norm are widely used as a measure of smoothness (Györfi et al., 2006). Our study focuses a family of density distributions that lie in a Hölder ball. Let $\beta = s + \gamma > 0$ be a degree of smoothness, where $s = \lfloor \beta \rfloor$ is an integer and $\gamma \in [0, 1)$. For a function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, its Holder norm is defined as

$$\|f\|_{\mathcal{H}^\beta} := \max_{s: \|s\|_1 \leq s} \sup_x |\partial^s f(x)| + \max_{s: \|s\|_1 = s, x \neq z} \frac{|\partial^s f(x) - \partial^s f(z)|}{\|x - z\|_\infty^\gamma}$$

where s is a multi-index. We say a function f is β -Holder if $\|f\|_{\mathcal{H}^\beta} < \infty$. We define a Holder ball of radius $B > 0$ as

$$\mathcal{H}^\beta(B) = \{f : \mathbb{R}^d \rightarrow \mathbb{R} \mid \|f\|_{\mathcal{H}^\beta} < B\}$$

Definition A.2 (Class of ReLU Score Network and Parameters). The class of ReLU score network is defined as

$$\mathcal{F}(M_t, W, \kappa, L, K) := \{s(y, x, t) = (A_L \sigma(\cdot) + b_L) \circ \dots \circ (A_1[y', x', t]' + b_1)\}$$

where $A_i \in \mathbb{R}^{d_i \times d_{i+1}}$, $b_i \in \mathbb{R}^{d_i+1}$, $\max d_i \leq W$, $\sup_{y, x} \|s(y, x, t)\|_\infty \leq M_t$, $\max \|A_i\|_\infty \vee \|b_i\|_\infty \leq \kappa$ and $\sum_{i=1}^L (\|A_i\|_0 + \|b_i\|_0) \leq K$. For the conditional approximation, we choose the score network with parameters satisfying

$$M_t = \mathcal{O}\left(\frac{\sqrt{\log N}}{\sigma_t^2}\right), W = \mathcal{O}(N \log^7 N)$$

$$\kappa = e^{\mathcal{O}(\log^4 N)}, L = \mathcal{O}(\log^4 N), K = \mathcal{O}(N \log^9 N)$$

where the network size parameter $N = n^{\frac{d+d_x}{d+d_x+\beta}}$; for constants $C_\sigma, C_\alpha > 0$, we take the early stopping time $t_0 = N^{-C_\sigma} < 1$ and the terminal time $T = \mathcal{O}(\log n)$.

B. Mathematical Proofs

Proof B.1 (Proof for Theorem 3.1).

$$\sqrt{n^G}(\hat{\tau}^{G_n}(x) - \tau(x)) = \sqrt{n^G}(\hat{\tau}^{G_n}(x) - \hat{\tau}(x)) + \sqrt{n^G}(\hat{\tau}(x) - \tau(x))$$

$$\begin{aligned} \lim_{n^G \rightarrow +\infty} \sqrt{n^G}(\hat{\tau}^{G_n}(x) - \hat{\tau}(x)) &= \lim_{n^G \rightarrow +\infty} \sqrt{n^G} \left(\frac{1}{n^G} \sum_{i=1}^{n^G} (Y_{i,x}^{G_n}(1) - Y_{i,x}^{G_n}(0)) - \frac{1}{n^G} \sum_{i=1}^{n^G} (Y_{i,x}(1) - Y_{i,x}(0)) \right) \\ &= \lim_{n^G \rightarrow +\infty} \sqrt{n^G} \left(\frac{1}{n^G} \sum_{i=1}^{n^G} (Y_{i,x}^{G_n}(1) - Y_{i,x}(1)) + \frac{1}{n^G} \sum_{i=1}^{n^G} (Y_{i,x}(0) - Y_{i,x}^{G_n}(0)) \right) \\ &= \lim_{n^G \rightarrow +\infty} \sqrt{n^G} \left(\frac{1}{n^G} \sum_{i=1}^{n^G} \mathcal{O}\left(n^{-\frac{\beta}{4(d+d_x+\beta)}} (\log n)^{\max(9, \frac{d}{2} + \frac{\beta}{4} + 1)}\right) \right) \\ &= \lim_{n^G \rightarrow +\infty} (n^G)^{\frac{1}{2}} \mathcal{O}\left(n^{-\frac{3}{4+\frac{d+d_x}{\beta}}} (\log n^G)^{3 \max(9, \frac{d}{2} + \frac{\beta}{4} + 1)}\right) \\ &= o_p(1) \end{aligned}$$

It shows that the first term $\sqrt{n^G}(\hat{\tau}^{G_n}(x) - \hat{\tau}(x))$ converges to 0 in probability, therefore it has no effect on the asymptotic distribution of $\hat{\tau}^{G_n}(x)$. For the second term $\sqrt{n^G}(\hat{\tau}(x) - \tau(x))$, by Central Limit Theorem, we have $\sqrt{n^G}(\hat{\tau}(x) - \tau(x)) \xrightarrow{d} \mathcal{N}(0, \text{Var}(Y_{i,x}(1) - Y_{i,x}(0)))$. Finally, by Slutsky's theorem,

$$\sqrt{n^G}(\hat{\tau}^{G_n}(x) - \tau(x)) \xrightarrow{d} \mathcal{N}(0, \text{Var}(Y_{i,x}(1) - Y_{i,x}(0)))$$

■

605 **Proof B.2** (Proof for Theorem 3.2). Define a triangular array whose n th row has nn^G elements. The first n^G elements
 606 consist of a random sample $\{Y_{i,X_1}^{G_n}(1) - Y_{i,X_1}^{G_n}(0) - \tau^{G_n}(X_1)\}_{i=1}^{n^G}$, and the k th n^G elements consist of a random sample
 607 $\{Y_{i,X_k}^{G_n}(1) - Y_{i,X_k}^{G_n}(0) - \tau^{G_n}(X_k)\}_{i=1}^{n^G}$. Each element M_{nj} in n th row has mean $\mathbb{E}[M_{nj}] = 0$. Therefore, $Var(M_{nj}) =$
 608 $\mathbb{E}[M_{nj}^2]$. Let the sum of variance in n th row be $s_n^2 = \sum_{j=1}^{nn^G} \mathbb{E}[M_{nj}^2] = n^G \sum_{x \in \{X_k\}_{k=1}^n} \mathbb{E}[(Y_{i,x}^{G_n}(1) - Y_{i,x}^{G_n}(0) - \tau^{G_n}(x))^2]$.
 609 By Lindeberg Central Limit Theorem,
 610

$$\frac{1}{s_n} \sum_{x \in \{X_k\}_{k=1}^n} \sum_{i=1}^{n^G} (Y_{i,x}^{G_n}(1) - Y_{i,x}^{G_n}(0) - \tau^{G_n}(x)) \xrightarrow{d} \mathcal{N}(0, 1)$$

612 Furthermore,
 613
 614
 615
 616
 617
 618

$$\begin{aligned} \frac{1}{s_n} \sum_{x \in \{X_k\}_{k=1}^n} \sum_{i=1}^{n^G} (Y_{i,x}^{G_n}(1) - Y_{i,x}^{G_n}(0) - \tau^{G_n}(x)) &= \frac{1}{\frac{1}{nn^G} s_n} \frac{1}{nn^G} \sum_{x \in \{X_k\}_{k=1}^n} \sum_{i=1}^{n^G} (Y_{i,x}^{G_n}(1) - Y_{i,x}^{G_n}(0) - \tau^{G_n}(x)) \\ &= \frac{1}{\frac{1}{n} \sqrt{n^G \sum_{x \in \{X_k\}_{k=1}^n} V_x^{G_n}}} \left((\hat{\tau}^{G_n} - \tau) + \left(\tau - \frac{1}{n} \sum_{x \in \{X_k\}_{k=1}^n} \tau^{G_n}(x) \right) \right) \\ &= \frac{1}{\sqrt{\frac{n^G}{n}} \sqrt{\frac{1}{n} \sum_{x \in \{X_k\}_{k=1}^n} V_x^{G_n}}} \left((\hat{\tau}^{G_n} - \tau) + \left(\tau - \frac{1}{n} \sum_{x \in \{X_k\}_{k=1}^n} \tau^{G_n}(x) \right) \right) \end{aligned}$$

621
 622 By Law of Large Number, the second term satisfies $\lim_{n \rightarrow +\infty} \frac{1}{n} \sum_{x \in \{X_i\}_{i=1}^n} \tau^{G_n}(x) = \tau$. Therefore, $\sqrt{nn^G}(\tau -$
 623 $\frac{1}{n} \sum_{x \in \{X_k\}_{k=1}^n} \tau^{G_n}(x)) = O_p(1)$. Therefore, $\sqrt{\frac{n^G}{n}}(\tau - \frac{1}{n} \sum_{x \in \{X_k\}_{k=1}^n} \tau^{G_n}(x)) = o_p(1)$. Therefore, the second term
 624 has no effect on the asymptotic distribution, which implies
 625
 626
 627
 628
 629
 630
 631
 632
 633

$$\sqrt{\frac{n}{n^G}} \frac{1}{\sqrt{\frac{1}{n} \sum_{x \in \{X_k\}_{k=1}^n} V_x^{G_n}}} (\hat{\tau}^{G_n} - \tau) \xrightarrow{d} \mathcal{N}(0, 1)$$

■

C. Training Procedures here

C.1. Pseudocodes

Here we present the pseudocode for the conditional score-matching diffusion framework.

Algorithm 1 Training

653
 654 1: **repeat**
 655 2: $\mathbf{Y}_0^0 \sim q(\mathbf{Y}_0)$, $\mathbf{Y}_1^0 \sim q(\mathbf{Y}_1)$
 656 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
 657 4: $\boldsymbol{\epsilon}_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, $\boldsymbol{\epsilon}_1 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 658 5: Do gradient descent $\nabla_{\theta} (\|\boldsymbol{\epsilon}_0 - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t} \mathbf{Y}_0^0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_0, t, X)\|^2 + \|\boldsymbol{\epsilon}_1 - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t} \mathbf{Y}_1^0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}_1, t, X)\|^2)$
 6: **until** converged

660 **Algorithm 2** Sampling

```

661 1:  $\tau^T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 
662 2:  $\mathbf{Y}_0^t = \tau^T, \mathbf{Y}_1^t = \tau^T$ 
663 3: for  $t = T$  to 1 do
664 4:    $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 
665 5:    $\mathbf{Y}_0^{t-1} = \frac{1}{\sqrt{\alpha_t}} (\mathbf{Y}_0^t - \frac{1-\alpha_t}{\sqrt{1-\alpha_t}} \epsilon_\theta(\mathbf{Y}_0^t, t, X)) + \sigma_t \mathbf{z}$ 
666 6:    $\mathbf{Y}_1^{t-1} = \frac{1}{\sqrt{\alpha_t}} (\mathbf{Y}_1^t - \frac{1-\alpha_t}{\sqrt{1-\alpha_t}} \epsilon_\theta(\mathbf{Y}_1^t, t, X)) + \sigma_t \mathbf{z}$ 
667 7: end for
668 8: return  $\mathbf{Y}_0^0, \mathbf{Y}_1^0$ 

```

 669
 670 **C.2. Hyperparameter Settings for Training CDiff**

Blocks	Sets of Hyper-parameters
Initialization	Xavier Initialization for Weight matrix, Zero initialization for bias vector.
Optimization	AdamW
Batch size	1024
Depth of layers	2 + 2 (See Sec 5.3 for details)
Hidden state dimension	512
α, β	{0.1, 0.01}

 681
 682 *Table 5. Hyperparameters of CDiff*

 683 **C.3. Implemental Details**

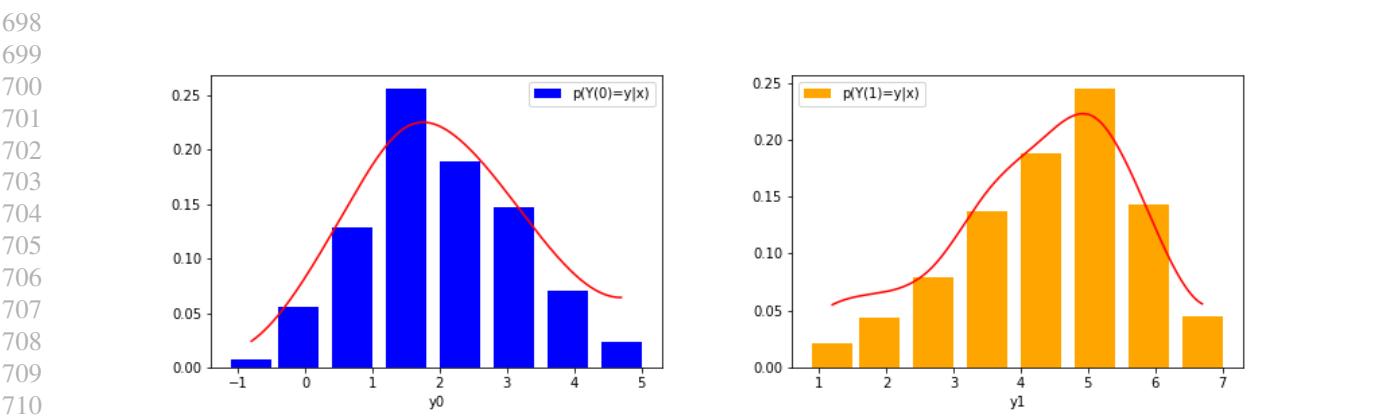
684 We train all models with AdamW optimizer with initialization learning rate of 1e-4 and weight decay of 1e-2. The cosine annealing learning rate warmup is adopted to stabilize the training process. Following common practice in the Diffusion model, we maintain an exponential moving average (EMA) of eights over training with a decay of .999. We use 1000 time steps during training while 500 time steps during inference. We train the model for about 100,000 steps. The hidden dim of Denoising Module is set to 512.

 685
 686
 687
 688
 689
 690

 691 **D. Additional Simulation and Experiment Results can go here**

 692 **D.1. Conditional Density Simulation**

693 We evaluate CDiff's ability to recover $p(Y(w)|X = x)$ under extreme selection bias ($D_{KL} = 600$), focusing on a fixed covariate value x_0 . Using 10^3 generated samples per treatment arm, CDiff generates samples that are remarkably close to ground truth distributions (Figure 5), confirming accurate counterfactual density matching despite limited overlap.



Dataset	IHDP ($\hat{\epsilon}_{ATE}$)		IHDP ($\sqrt{\hat{\epsilon}_{PEHE}}$)	
	Methods	In-sample	Out-sample	In-sample
CDiff	.09 ± .02	.12 ± .02	1.7 ± .2	1.8 ± .3
Scalar Only	.11 ± .03	.14 ± .04	1.8 ± .2	1.9 ± .3
Binary Only	.14 ± .03	.19 ± .05	2.2 ± .3	2.5 ± .4
without CE	.17 ± .03	.25 ± .05	2.6 ± .3	2.8 ± .4

Table 6. Ablation studies on IHDP of w/o using cosine embedding (CE) for conditions. Mean and STD values are computed over multiple independent runs.

D.2. Additional Ablation Studies

Table 6 quantifies cosine embedding (CE)’s impact on IHDP’s mixed data types (scalar/binary covariates). Ablating CE for either types increases prediction errors, where joint removal yielding further performance degradation. The greater sensitivity to scalar covariates stems from their wider dynamic range—CE stabilizes learning by normalizing heterogeneous input scales, whereas binary features inherently exhibit limited variance.

E. Alternative Version of Models

Multi-Treatment Extension Figure 6 extends CDiff to K treatments via parallel score heads $\{\epsilon_w^t\}_{w=1}^K$ with shared covariate encoding. This preserves sample efficiency while scaling complexity linearly with K .

Ablated Architecture Figure 7 evaluates the 0+4 configuration (no shared layers between treatment arms), exhibiting 72% higher $\sqrt{\epsilon_{PEHE}}$ than CDiff. This hints the potential cost of ignoring counterfactual information flow - a critical design insight for causal architectures.

F. Discussion of Limitations

While CDiff excels in complex settings with nonlinear responses and high dimensional inputs, its computational intensity makes classical low-dimensional linear regimes (e.g., randomized trials with small sample sizes) better served by simpler estimators. This trade-off reflects CDiff’s design prioritization: sacrificing lightweight computation for unmatched fidelity in modern, data-rich environments. Future work will extend CDiff to multi-modal data (e.g., medical imaging, sensor streams) while developing distillation/quantization techniques to enhance efficiency without sacrificing theoretical guarantees.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800

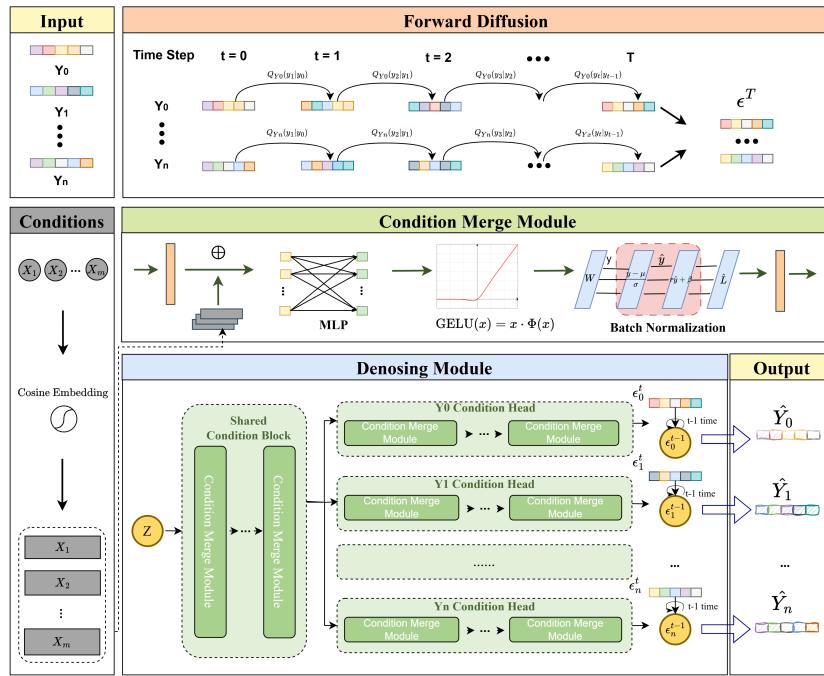


Figure 6. An Multi-Head Version of CDiff

801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

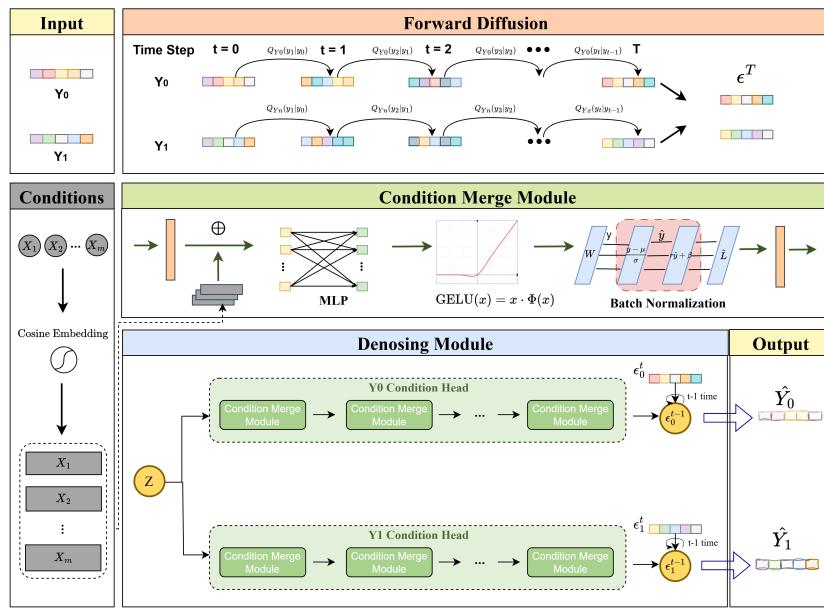


Figure 7. An Alternative Verion of Two-Head CDiff