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Abstract

A core challenge in causal inference lies in the
fundamental “missing counterfactual” problem:
for each unit, only one potential outcome (treated
or untreated) is observable. This renders simple
comparisons of sample means between treatment
groups statistically biased. We present CDiff, a
theoretically principled framework for treatment
effect estimation under unconfoundedness that
leverages recent advances in conditional score-
matching diffusion models. Building on statistical
learning theory, we formalize how these models’
distribution-approximating capabilities enable ac-
curate estimation of conditional outcome distribu-
tions given covariates. Our approach facilitates
simultaneous imputation of counterfactual out-
comes and estimation of individual treatment ef-
fects through principled distribution matching and
Monte Carlo sampling. We establish key statis-
tical properties of the proposed estimators: con-
sistency, asymptotic normality, and finite-sample
error bounds, enabling direct construction of con-
fidence intervals for hypothesis testing. CDiff ad-
vances causal inference methodology by integrat-
ing state-of-the-art generative models with rigor-
ous statistical guarantees, with applications rang-
ing from personalized medicine to policy evalu-
ation. Experimental validation across multiple
domains demonstrates the framework’s empirical
effectiveness.

1. Introduction

Causal inference faces a fundamental identification chal-
lenge: the impossibility of observing both potential out-
comes (treated and untreated) for any individual. While
existing methods address this missing data problem through
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assumptions like unconfoundedness, they often rely on re-
strictive parametric models or fail to scale to complex, high-
dimensional data. We propose CDiff, a framework that
bridges causal inference with modern generative models
by leveraging conditional diffusion processes to estimate
potential outcome distributions. Our work is motivated by
three key observations: (1) diffusion models excel at cap-
turing complex conditional distributions, (2) causal effect
estimation inherently requires counterfactual density model-
ing, and (3) recent advances in score matching provide new
theoretical tools for statistical inference. This work makes
four advances:

* Generative Causal Framework: A conditional diffu-
sion framework that jointly estimates treated/untreated
outcome distributions through score matching, enabling
simultaneous imputation of counterfactuals and estima-
tion of individual treatment effects (ITE)

* Theoretical Guarantees: Finite-sample error bounds
for counterfactual prediction, nonparametric convergence
rates for potential outcome distributions, and asymptotic
normality of the average treatment effect (ATE) estimator
with variance characterization

* Empirical Effectiveness: State-of-the-art performance
across synthetic and real-world benchmarks, significantly
outperforming best benchmarks in both ATE and ITE
estimation error

* Generalized Causal Inference: Extension to unstruc-
tured data modalities (images, text, graphs) through differ-
entiable diffusion architectures, overcoming limitations
of traditional covariate-based methods

CDiff advances causal methodology by integrating the
distribution-approximating power of diffusion models with
statistical inference theory. The derived asymptotic vari-
ance enables direct construction of confidence intervals for
hypothesis testing. Our research demonstrates how deep
generative models can overcome longstanding limitations
in causal inference.

1.1. Diffusion and Conditional Diffusion Model

The emergence of generative modeling has revolutionized
various fields, enabling the development of influential ap-
plications in text-to-image and text-to-video generation,
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such as Stable Diffusion, MidJourney, DALL-E 2, and Fire-
fly (Ramesh et al., 2022; Zhang et al., 2023; Rombach et al.,
2022). At the core of these advancements lies the diffusion
model, a powerful framework for high-fidelity sample gen-
eration. Among these, the Denoising Diffusion Probabilistic
Model (DDPM) has become foundational. DDPM leverages
variational inference to generate data through a multi-step
sampling process. It models a reverse Markov chain to undo
a forward diffusion process, wherein incremental noise is
added to the original data (e.g., an image) until it becomes
pure Gaussian noise (Ho et al., 2020; Sohl-Dickstein et al.,
2015). Due to its ability to produce high-quality outputs,
DDPM and its variants have quickly set the state of the art
across image, audio, and video generation tasks (Dhariwal
& Nichol, 2021; Chen et al., 2020; Ho et al., 2022).

One of the most remarkable features of diffusion models is
their flexibility to incorporate various forms of input ~’guid-
ance” to control the generation process. Classifier-free Con-
ditional Diffusion Models (CDMs), for instance, combine
conditional and unconditional score estimates to balance
sample quality and diversity (Ho & Salimans, 2022a). This
adaptability has made diffusion models a versatile tool for
generation of various distributions.

The seminal work of Song et al. (2020) provides a unified
perspective on various classes of diffusion models, including
DDPM and score-based modeling via Langevin Dynamics,
by extending these frameworks to a continuous-time formu-
lation. In this formulation, the forward and reverse processes
are elegantly described as a stochastic differential equation
(SDE) and its corresponding reverse-time SDE, respectively.
Subsequent advancements in statistical analysis have rigor-
ously demonstrated that score-matching diffusion models
serve as highly effective approximators of probability dis-
tributions, offering a strong theoretical foundation for their
remarkable success in generative modeling. In particular,
progress in conditional score approximation has introduced
sample complexity bounds that adapt to the smoothness of
the underlying data, achieving near-optimal estimation rates
in total variation distance (Oko et al., 2024; Fu et al., 2024).

1.2. Related Work in Causal Inference

A variety of estimators for ATE under the unconfounded-
ness assumption have been developed in the fields of statis-
tics and econometrics. Many of these estimators rely on
nonparametric estimation of the regression function or the
propensity score (Hahn, 1998; Hirano et al., 2003; Imbens
et al., 2007). These methods derive the asymptotic variance
for ATE and construct estimators capable of achieving the
semiparametric efficiency bound.

Another significant body of research has focused on esti-
mating ITE. These methods typically take one of two ap-
proaches: learning a separate model for each treatment

group or incorporating treatment as an input feature with
proper adjustments that account for the imbalance between
the treated and control group distributions to mitigate the
impact of selection bias. Classical approaches include
tree-based methods, such as Bayesian Additive Regression
Trees (BART) (Chipman et al., 2012), recursive partition-
ing (Athey & Imbens, 2016), and Causal Forests (Wager
& Athey, 2018). Matching methods have also been widely
explored, with techniques like one-to-one matching and
propensity score matching being proposed to address se-
lection bias (Dehejia & Wahba, 2002; Crump et al., 2008;
Lunceford & Davidian, 2004). In recent years, deep learn-
ing has emerged as a powerful tool for ITE estimation. Jo-
hansson et al. (2016) and Shalit et al. (2017) introduced
frameworks that leverage neural networks to model ITE,
incorporating techniques to minimize the discrepancy be-
tween the treated and control group distributions. Finally,
a multi-task learning approach was developed to estimate
counterfactuals by modeling the posterior distribution of
outcomes (Alaa & Van Der Schaar, 2017). All these meth-
ods share the similar objective as they primarily focus on
estimating conditional expectations E[Y'|T, X] rather than
modeling full outcome distributions.

CDiff fundamentally advances this paradigm by learning the
complete conditional density p(yo, y1|z) through diffusion
dynamics. Prior generative attempts like GANITE (Yoon
et al., 2018) suffered from three limitations: (1) inefficiency
in learning overlapping outcome distributions due to the in-
nate vulnerability of GAN to mode collapse, (2) requirement
for separate networks to impute missing outcomes (coun-
terfactual generator), and estimate treatment effects (ITE
generator) (3) absence of theoretical guarantees.In contrast,
CDiff’s conditional score matching provides stable gradient
flows allowing for more efficient approximation of treat-
ment/control outcome distributions (Dhariwal & Nichol,
2021; Song et al., 2020), eliminating need for auxiliary net-
works and yielding significantly better performance across
benchmarks.

The recent DiffPO framework (Ma et al., 2024) shares our
use of diffusion models but diverges critically in three
aspects. First, architectures: DiffPO employs a single
treatment-conditioned model p(y|t, x), while CDiff learns
separate but partially shared networks p(yo|x), p(y1|z) en-
abling separate covariate-dependent conditioning. This
proves essential as treatment group sizes are often imbal-
anced (e.g., 1:10 ratio), where shared base layers stabilize
small-group learning while treatment-specific heads cap-
ture distributional shifts. Second, bias mitigation: DiffPO
requires decent estimation of propensity scores 7(x) via
an addition neural network to construct its orthogonal dif-
fusion loss. Accurate learning of nuisance parameter is
particularly challenging when z is high-dimensional and
unstructured. Lastly, inference guarantees: Where DiffPO
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provides consistency under correct specifications, CDiff es-
tablishes consistency and asymptotic normality of the ATE
estimator generously—enabling valid confidence intervals
construction without the restrictive Neyman orthogonality
assumption. Our theoretical rigor translates to empirical
improvements, as CDiff reduces ATE and ITE estimation
errors by a significant margin across benchmarks and simu-
lations.

2. Preliminaries
2.1. Problem Formulation

Let D; denote a dummy variable such that D; = 1 if indi-
vidual 7 receives the treatment, and D; = 0 otherwise. The
potential outcomes are denoted as Y;(1) and Y;(0), corre-
sponding to the treated and untreated states, respectively.
The observed outcome is thus expressed as Y; = D;Y;(1) +
(1 — D;)Y;(0). For the identification of treatment effect, we
assume unconfoundedness: D; L (Y;(0),Y;(1)) | X; and
overlap0 < p(D; = 1| X; = z) < 1,Vz. Below we offer
some different definition of treatment effect.

Definition 2.1. The individual treatment effect (ITE) is
defined as

7(2) £ E[Yi(1) - Yi(0)|X; = a]

Definition 2.2. The average treatment effect (ATE) is de-
fined as

Tarp = E[Y;(1) - Yi(0)]

Definition 2.3. The average treatment effect on the treated
(ATT) is defined as

Tarr £ E[Yi(1) = Y;(0)|D; = 1]

When the true distribution that generates the sample x,y,
denoted as py; (x,¥), is known, the goodness of estimation
of both ATE and ITE can be measured by the following two
metrics:

Definition 2.4. The absolute error in average treatment
effect, or e o7, is defined as:

ears 2 [By,muoep V(1) = Yi0)] = By, g, [Ti(D) - ¥i(0)]|

where Y; = [Y(0),Y(1)]T are outcomes predicted or

3
generated from a learned model G given the observation x;.

Definition 2.5. The expected precision in estimation of
heterogeneous effects, or epgyg, which according to Hill
(2011) is given by:

erene = B, [ (Ex; V(1) = Yi(0) - By, e,y [1:0) = 1:00)])]
The statistical and econometric literature traditionally fo-

cuses on direct nonparametric estimation of potential out-
come expectations. In contrast, we propose a novel

paradigm centered on learning the complete conditional
outcome distributions through diffusion-based density es-
timation. Formally, we partition the dataset into treatment
groups: Syeaed = {¢ : D; = 1} and Seonrol = {i : D; = 0}.
Using the respective subsets {(Y;, X;) : © € Syeatea} and
{(Y:, X;) : i € Scontrol }» We train two conditional diffusion
models: g1, x(Y) = p(Y(1)|X) for the treated outcome
distribution and gy x (Y") = p(Y'(0)|X) for the control out-
come distribution. Counterfactual imputation proceeds via
Monte Carlo sampling for treated units: {Y;(0) : ¥;(0) ~
90,x, (Y),% € Spreated } - The average treatment effect for the
treated is then estimated as:

1

TATT = o
|Slreated|

(viv) - i(0)).

1€ Sireated

Learning the full distribution, rather than just the expecta-
tion, offers several advantages. It enables sampling arbitrary
counterfactual realizations for quantile estimation and distri-
butional effect analysis, which leads to variance reduction
and robust inference. The method’s statistical guarantees
rely crucially on controlling the distributional estimation
error ||gw, x (Y) — p(Y (w) | X)||, as will be discussed later.

2.2. Diffusion with Classifier Free Guidance as a
Conditional Distribution Learner

The goal of conditional diffusion models is to generate sam-
ples from the conditional data distribution p(Y'|X'), where
P is the probability distribution function and X € R% is
the conditioning information. Y~ € R? is the dependent vari-
able of our interest. Diffusion model consists of a forward
process and a backward process. Song et al. (2020) extends
the diffusion framework into continuous time limit, drawing
equivalence of forward and backward diffusion process with
SDE and reverse-time SDE, respectively. Specifically, the
forward process is an Ornstein-Ulhenbeck process:

1 .
dy[® = —thzdt +dW;  with Yy ~ Py(-|x)
where W is a Wiener process. At any finite time ¢, we de-
note P;(- | z) as the marginal conditional distribution. The
forward process will terminate at a sufficiently large time 7T'.
For sample generation, the backward process reverses the

time in forward process:

. _
dY;"" = | 5Y"T + Viegpr (Y, |2) | dt + dW,

where Y;~ ~ Pr(- | =) and Vlogpr_¢(Y,;" |z) is the
so-called ’conditional score function’, which is the gradient
of the log probability density function of Pr_;. W; is an-
other Wiener process that is independent of W;. Both the
score function V log p; and the distribution pr are unknown,
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however, we know limy_, o Y* ~ N(0, I). We replace the
unknown distribution pp by the standard Gaussian distribu-
tion and denote $(y, x, t) as an estimator for V log p;(y|z).
The estimated score § is often parameterized by a deep neu-
ral network and takes data, conditional information and time
as inputs. The conditional sample generation is to simulate
the following backward process

N 1~ - _
dy;" < = [2}/}‘— +3(Y, "7y, T —t)| dt + dWs,

where Y"'*" ~ N(0, I). Denote the distribution of Y, con-
ditioned on x as Py_(- | ). We use deep neural networks
to estimate the conditional score function and a conceptual
quadratic loss is defined as: !

T

arglfslin/ w(t)Ey, o [lIs(ye, z,) — V1og pe(yel2)|13] dt,
seE to

where w(t) is a time dependent reweighting function, for

instance, w(t) = % & is a class of deep neural networks.

However, such an objective function is not computable using
samples, as the score function V log p; is unknown. Instead,
we minimize the following objective function,

T
[ wune (B (194 g Cuelo) = stoe. O] .
0

Here ¢:(y:|yo) denotes the Gaussian transition kernel of
the forward process, so that V,, log ¢, admits an analytical
form

yr — a(t)yo

h(t)

where a(t) = e~ 2% and h(t) = 1 — e~t. If the true dis-
tribution P, is smooth enough, then there exists a ReLU
neural network that can consistently estimate the conditional
score function. In practice, we collect data {y;, z; }?_; and
minimize the empirical risk (Ho & Salimans, 2022b)

Vy, log ¢¢(ytlyo) = —

n

£(s) = - > Uy i),

i=1

§ = argmin L(s),
seS

where £(y;, z;; s) is given by

T
1
/ TEy~N(ar,021) [[I5(y, z,t) — Vy log ¢e(ye|yo)|3] dt.
to

We measure the quality of the estimator § by its mean-
squared deviation to the true conditional score function

T

. 1 .

R(s) = / 7By ll8(ye, ,t) — V log py (ye|z)l[5dt.
to

Under some regular conditions, this mean-squared deviation

converges to zero in probability. Given the trained con-

ditional score network §(y, x,t), we obtain the estimated

%o is an early-stopping time to prevent the blow-up of score
functions.

conditional distribution Py(-|z). If the KL divergence of the
original distribution P(-|x) is bounded, then the estimated
distribution converges to the true distribution in the sense of
total variance.

2.3. Theoretical Results for Distribution Approximation

Fu et al. (2024) presents a sharp statistical theory of distribu-
tion estimation using conditional diffusion models. The key
to the theoretical complexity bound lies in an approximation
result for the conditional score function, which is shown in
Theorem 2.6.

Suppose the conditional distribution has a density p(y|z) €
HP(B) for a Holder index 3 and constant B (see Ap-
pendix A.1). Moreover, there exist constants C7, C5 such
that for all z, the density function p(y|z) < Cye—2C2lvll3,
Theorem 2.6 (Conditional Score Function Approximation).
For the class of ReLU score network (see AppendixA.2) , if

we choose the parameters, stopping time and terminal time
appropriately (also see AppendixA.2), then

. 1 ___ 8 masx 8
Efa,y, ;=1R<s>:0(5" 777 (log n) “”“””)

Given a conditional score network $(y, z,t), we establish
quantifiable bounds on distribution estimation accuracy. For
a given covariate vector , let P(-|z) denote the gener-
ated distribution obtained through early-stopped diffusion
sampling using the estimated score s. The following theo-
rem bounds the total variation (TV) distance between the
learned distribution P(-|z) and the true conditional distribu-
tion P(-|x), providing rigorous quality guarantees:

Theorem 2.7. Assume in addition that there exists a con-
stant C' such that KL(P(-|y)|N(0,1)) < C < oo for all y.
3

Taking the early-stopping time to = n= *d+d=+8) and the

terminal time T = % log n, it holds that

Egyoeyr,Ee (TV(Py (1), P(|2))) =
@) (n*m (log n)max(9,%+§+1))

These theorems lay down critical theoretical foundations
for using diffusion models in causal inference. By guar-
anteeing accurate approximation of conditional outcome
distributions, it enables reliable estimation of the ATE and
related causal quantities. In Section 3, we further prove that
treatment effect estimators derived through this framework
achieve both consistency and asymptotic normality.

3. Model and Estimator

3.1. Treatment Effect Estimator and Properties

To estimate the individual treatment effect 7(x), we first
learn the conditional distribution f(X|WW) using the full
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sample, obtaining f(X|WW). We generate n synthetic co-
variates { X7}, via the mapping: X& = h(WZ) where
h(-) corresponds to the conditional network f(X|-). In
practice, this step can be omitted if n is sufficiently large to
approximate the population distribution, or the support of
interest X’ is fully covered by the observed sample { X} .
This paper will focus on this case.

Core Estimation Procedure Assuming access to n ob-
servations {(X;, Yz)}l 1> we generate n¢ counterfactual
pairs for each X; = x based on density (Y% (0)|X; =

x) ~ gox(Y) and (YE(1)|X; = 2) ~ g1x(Y),
where g, x (Y') and g1, x (Y") represent conditional outcome
density functions that are separately learned via condi-
tional diffusion models. For notation simplicity we write
(YE(0), YE()[X, = ) = (Y (0), V.S (1)). The individ-
ual treatment effect estimator is then:

- = > (VS -YE0).

Here we propose our main theorems, which substantiate
that a framework based on conditional diffusion models
can be effective in estimating treatment effects. Detailed
proofs can be found in Appendix B. For asymptotic analysis,
we replace G by G, to indicate that the generated pairs
(Yf; (0), Yfi (1)) also depends on the sample size n.
Theorem 3.1. Suppose assumptions in 2.7 holds and we
obtain an estimator € for the treatment effect based on the
score network in 2.6. Then the convergence rate of 77 ()
is

9 (2) = 7(2)] = O((n%) %)

+0 (nfm (log n)max(97%+§+1)) .

For asymptotic analysis, let both n and n go to infinity and
nG = n3, then consistency and asymptotical normality are
obtained, i.e.
. . G o
RILH;O nélglooT (x) =71(x)
VS (79 () = (x)) 5 N (0,V2)
where Vy = E(Y; 2(1) = Y;4(0))? = (E[Yi.0 (1) - i (0)])

So Targ can be consistently estimated as 7Gn =
L5 se{X}n, 7Gn (2). We now propose the following the-
orem for statistical inference for ATE, which is crucial as it
quantifies the average effectiveness of a policy or treatment
on a population..

Theorem 3.2 (Asymptotic Properties of ATE Estimator).
2
Let VO £ F {(Yfi’” (1) — Yfij" (0) — T(:E)) ] denote the

conditional variance of individual treatment effects. Assum-
ing standard regularity, ATE estimator satisfies:

~G,

(i) Consistency: 7 2 7 asn,n® —

(ii) Asymptotic Normality:

Ve 0=/ [

S Ve SN, 1)

IG{XI“};CL:I
where the variance estimator
12 2
¥ Gn = Gn Gn "Gn
Ve e S (V) -G (0) - 79 (@)
i=1

is consistent: f/xG“ 2, V.Gn,
Theorem 3.2 allows for construction of confidence interval
for ATE.

Definition 3.3 (Confidence Intervals). Let 2;_,/> denote
the (1 — «/2)-quantile of the standard normal distribution.
Given the variance estimator (1), define the standard error:

5. & |1 R

n
re{ Xk},

The (1 — «)-confidence interval (CI; _,,) for 7 is given by

nG nG
~G. A ~G N
T T Zleay2 On\[ T T +21—a/20n e

3.2. Model Architecture

We formally present CDIiff, a conditional score-based dif-
fusion framework that jointly learns counterfactual distri-
butions P(Y(0)|X) and P(Y(1)|X) through shared rep-
resentation learning. Building on conditional denoising
diffusion framework, CDiff extends the score-matching ob-
jective to leverage structural similarities between treatment
arms while preserving causal identifiability.

As shown in Fig. 1, CDiff employs: 1) A shared condi-
tion block that encodes treatment-invariant features from
covariates X, and 2) Parallel counterfactual condition
heads that separately learn treatment-specific score func-
tions €q, €1 via conditionally modulated denoising. Within
each block, CDiff deploys the Condition Merge Modules
that combines covariate information with diffusion time-step
embeddings:

AU+ = BN(GELU(W, [h) & T(X)])),

where 7 (-) denotes cosine embeddings for continu-
ous/binary covariates and  is feature concatenation.
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Figure 1. A Diagram of CDiff

For each treatment w € {0, 1}, CDiff learns the score func-
tion €, (¢, Y (w), X) via:

etw = se(t,Y(w)t7X),

where Y (w)? is the noisified outcome at diffusion step ¢.
The shared encoder enables information transfer between
treatment arms through:

1
Lo=> Eyy(w).x [lleh = Vyy logp: (Y (w)"|X)|3] .

w=0

Starting from Gaussian noise Y (w)? ~ N(0,I), CDiff
iteratively denoises outcomes using ancestral sampling:

Y(w)til = /LB(Y(w)tv t7X) + O'tf, E ~ N(O7I)7

where 1y combines the learned score €, with scheduled
noise levels {0y} 7.

4. Simulations

In the first simulation, we evaluate the performance of
our model on a synthetic dataset inspired by the setup in
Yoon et al. (2018). Specifically, we generate 10,000 10-
dimensional feature vectors, x, sampled from N (O, 22),
where ¥ = 0.5 x (2 + QT) and Q ~ U ((—1,1)'0x10).
The outcome y conditional on observation x is given by
y = WX +n,, where w]' ~ U ((—0.1,0.1)'°%2), and
n, ~ N (0%%1,0.12 x [?*?). Similar to Yoon et al.
(2018)’s approach, we evaluate the robustness of our model
against various levels of selection bias, by comparing with
various benchmarks. We generate 10,000 treated or con-
trol samples from x; ~ N (p1, %2) or xg ~ N (po, X2),
respectively. For each trial, pg is fixed and we vary pq to
generate data with different levels of selection bias, as mea-
sured by Kullback-Leibler divergences (KL divergences)
between distribution of xy and x;. As is shown in Fig-
ure 2, Our model outperforms some of the best benchmarks
(GANITE and DiffPO) across levels of selection bias.

In-sample epene Out-sample Epene

-~ Ganite = Ganite
DiffP0 1 DIffP0
—e- Caift

y s -
bor ] Eos -

-
06 e 07 /
0s
06 J
04 05

[ W0 20 P 40 S0 600 0 0o 200 B0 40 S0 600
KL Divergence

Figure 2. Estimation of epgur under various levels of selection
bias. We selected four levels of KL-Divergence, corresponding
to zero, low, medium or high selection bias. The table reports the
mean and standard deviation (STD) from 100 independent trials.

- () P

Figure 3. CDiff-generated samples (colored histograms) versus
ground truth Y (w) distributions (red curves).

Figure 3 showcases CDiff’s ability to recover ground-truth
potential outcome distributions under high selection bias,
demonstrating almost complete alignment between gener-
ated distributions and ground truth. This is true for both
treatment arms and control arms. The ability for CDiff
to approximates true conditional density (p(Y (0)|X) and
p(Y (1)|X)) is demonstrated in Appendix D.

xi x‘2 xé x4 x‘S xé x‘7

Figure 4. True ITE and predicted confidence intervals. Blue
bars show 95% ClIs for different = values (black dots: true 7(z)).

Finally, we validate CDiff’s asymptotic guarantees via sam-
pling across the covariate space X, selecting seven x with
ground truth ITE 7(z) € [0.5,4]. Following Def. 3.3, we
construct 95% confidence intervals (Clgs9,) for each 7(z)
through 102 Monte Carlo trials. Figure 4 demonstrates sta-
tistically tight coverage as 100% of CIs contain 7(z) (mean
interval width 0.36 4 0.09).
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5. Experiments
5.1. Datasets

To address the challenge that counterfactual outcomes are
unobservable in real-world settings, we followed the stan-
dard approach used by many previous studies (Chipman
et al., 2012; Shalit et al., 2017; Alaa & Van Der Schaar,
2017; Yoon et al., 2018), evaluating our method on the semi-
synthetic IHDP dataset and the real-world Jobs dataset.

IHDP The Infant Health and Development Program
(IHDP) dataset (Hill, 2011) is widely used for the ITE es-
timation. It consists of 747 instances (139 treated, 608
controls) with 25-dimensional covariates. The outcome val-
ues were synthesized using the NPCI package under setting
‘A’, as implemented by Dorie (2016).

Jobs The Jobs dataset, developed by Lal.onde (1986), is a
widely used real-life benchmark for causal effect estimation.
It features a randomized study conducted by the National
Supported Work program, with 297 treated and 425 con-
trol samples. Observational data (the PSID group, 2490
controls) was later added by Smith & Todd (2005). The
treatment corresponds to receiving job training, while the
observed outcomes are income and employment status.

Since counterfactual outcomes are unobservable, two evalu-
ation metrics are commonly used for this dataset: the error
of the average treatment effect on the treated (e 4pr) and

the policy risk (Rpol (7¢)). According to Shalit et al. (2017)
and Smith & Todd (2005), the true 7577 is defined as:

1 1
TATT—W Z K(Xz)—m Z Y()(Xi),

x, €ET1NE x, €EToNE

where 7' and Ty are the treated and control groups, respec-
tively, and E is the randomized controlled trial subset. The
empirical estimate of € 477 is given by:

1 - N
m Z Yi(xi) — Yo(xi)l-
1 x; ETWNE

éarT = |TaTT —

The policy risk, another metrics that evaluates treatment
assignment policies, is given by:

Rpoi(my) =1 = (EM[mp(x) = 1,t = 1] - p(7y = 1))
+E[Y0|7Tf(x) =0,t=0] -p(ﬂf =0).

5.2. Results

On both datasets, we evaluate the in-sample and out-of-
sample estimations of T4rg and 7477 from our model
against several benchmark models. The baselines include
Balancing Linear Regression (BLR) and Balancing Neu-
ral Network (BNN) (Johansson et al., 2016), k-Nearest

Dataset IHDP (éarp) \ Jobs (éarT)
Methods  In-sample Out-sample ‘ In-sample  Out-sample
CDiff .09 +.02 J2 +.02 01 +.01 04 +.01
DiffPO AT+ .04 59 +.05 05+.02 .09 +.04
GANITE .43+ .05 49 +.05 01 +.01 .06 .03
BLR 72+ .04 93+.05 01 +.01 .08 +£.03
BNN 37+.03 42+.03 .04 £ .01 .09 + .04
k-NN .14+ .01 90 .05 21+.01 A3+.05
BART 23+ .01 34+.02 .02 £.00 .08 +£.03
C Forest 18+ .01 40+.03 .03+ .01 .07+.03
TARNET .26 +.01 28 £.01 05+.02 A1+.04
CFRwass 25+ .01 27+ .01 .04 £ .01 .09 +.03
CMGP A1+.10 A3+.12 .06 £ .06 .09 +.07

Table 1. Estimation errors of 747 and 7477 on IHDP and
Jobs datasets, featuring comparison between our model and cur-
rent SOTAs. Mean and STD values are computed over multiple
independent runs. The best results are highlighted in bold.

Neighbors (k-NN) (Crump et al., 2008), Bayesian Additive
Regression Trees (BART) (Chipman et al., 2012), Causal
Forests (C Forest) (Wager & Athey, 2018), Treatment-
Agnostic Representation Network (TARNET), Counterfac-
tual Regression with Wasserstein Distance (CFRyyass) (Shalit
et al., 2017), Multi-task Gaussian Process (CMGP) (Alaa &
Van Der Schaar, 2017), GANITE (Yoon et al., 2018), and
DiffPO (Ma et al., 2024).

Table 1 demonstrates CDiff’s superiority in estimating
population-level treatment effects (To7g, TarT) on IHDP
and Jobs datasets. Our framework achieves SOTA out-
of-sample performance over all benchmarks, across both
datasets (the difference is statistically significant p < 0.05
except for the highly volatile CMGP). While CDiff shows
substantial in-sample improvements on IHDP, its Jobs in-
sample performance is on par with the best benchmark mod-
els (GANITE and BLR).

We further evaluate CDiff using two alternative metrics:
the expected precision in heterogeneous effect estimation
(epeng) and policy risk (Rpoi(7£)). As shown in Table 2, CD-
iff demonstrates superior policy risk minimization, achiev-
ing a 30% reduction in out-of-sample Rpqi(7y) compared
to the second-best benchmark, GANITE (p < 0.05). While
CDiff significantly outperforms most benchmarks on epgyg
(e.g., GANITE, BART, and Causal Forest; p < 0.05), it
exhibits modest gaps to CMGP, TARNET, and CFRyyqgs.
This reflects CDiff’s implicit tradeoft: a slight performance
degradation in extreme quantiles for over performance at
population-level (ATE). epgyg, as sum of point-wise squared-
errors, inherently favors point-estimate methods like CMGP
and TARNET that prioritize local accuracy.

In summary, across diverse evaluation scenarios—spanning
simulation, semi-synthetic, and real-world datasets with
varying sample sizes (1,000-10,000 units), selection bias,
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Dataset IHDP (\/épEHE) ‘ Jobs (Rp(,l(ﬂ’f)) Dataset IHDP (éa7E) ‘ IHDP (\/épEnE)

Methods  In-sample Out-sample ‘ In-sample  Out-sample Methods In-sample Out-sample ‘ In-sample  Out-sample

CDiff 1.7+£.2 1.8+.3 .08+ .01 A1+.01 CDiff 09 +.02 A2 +£.02 1.7+.2 1.8+.3

DiffPO 28+.2 3.1+ 4 19+.02 22 +.03 Anoise 21+£.05 28 .07 25+.6 29+ .8

GANITE 19+ 4 24+ 4 13+ .01 14 + .01 Yi—-Y, 12 +£.03 16 £.04 213 26+.5

BLR 58+.3 58+.3 22+ .01 25+.02

BNN 22+.1 2.1+.1 20+ .01 24 + .02

NN 21+ 1 4140 22+ 00 26+ 02 Table 3. Ablation studies on IHDP of different learning target

BART 2:] + :] 2:3 N :] :23 N :00 :25 N :02 fo:l two geads. . Mean and STD values are computed over multiple

CForest  38+2 382 | .19£.00 .20£.02 independent runs.

TARNET .88 +.02 95 +£.02 17 +£.01 21+.01

CFRys  71£.02 76+.02 | .17+.02  21+.01 Dataset IHDP (éa7p) | IHDP (véppup)

CMGP 65+ .44 JT+.11 17 +.03 24+ .05 Methods In-sample  Out-sample | In-sample ~ Out-sample
3+1 12 +.02 .16 +£.02 1.9+ .2 20+ .3

Table 2. Estimation of eppr g or Ry, (7) on IHDP and Jobs 2+2(CDiff) .09+.02  .12+.02 1.7+.2 1.8+.3

datasets, featuring comparison between our model and current 1 +3 A7+£.03  22+£.04 21+3 23+ .4
0+4 25+.07 33+.11 28+ .4 3.1+.6

SOTAs. Mean and STD values are computed over multiple inde-
pendent runs. The best results are highlighted in bold.

and treatment group imbalances (1:5 to 1:10)—CDiff
achieves statistically significant superiority in 14 of 16 cases
(88%). This includes consistent first-rank performance on
both population-level (ATE/ATT) and individual-level (ITE)
metrics under in-sample and out-of-sample regimes. The
framework balances between asymptotic quality for ATE
and high precision in ITE, positioning itself as a versatile
tool for both large-scale policy evaluation and individual
intervention optimization.

5.3. Discussion

Ablation Study To understand the contributions of indi-
vidual components in our framework, we perform ablation
studies on IHDP by systematically modifying key elements
of the model. Additional ablation results are presented in
Appendix D.

Noise Formulation Table 3 compares three approaches:
1) CDiff: Joint prediction of €}, € via parallel heads; 2)
Anoise: Predicts €} and residual Ae! = €} —¢f; 3) Y1 —Yp:
Separate diffusion of Yy/(Y; —Yy) with scores €, €' .
CDiff significantly over-performs the other two types of
residual-like formulations, demonstrating that joint model-
ing of potential outcomes improves distribution matching
by leveraging covariate-outcome dependencies.

Architecture Configuration Table 4 evaluates layer al-
location between shared and treatment-specific modules,
where A+ B denotes A stacks of Condition Merge Modules
in Shared Condition Block and B stacks in Y;/Y; Condi-
tion Heads. CDiff’s balanced configuration (2+2) achieves
optimal performance among all configurations. In particular,
the 0+4 variant (fully independent heads) exhibits the worst
performance, underscoring the benefits of shared represen-

Table 4. Ablation studies on IHDP of different shared module
stacks (Shared Stacks + Unshared Stacks). Mean and STD
values are computed over multiple independent runs.

tations in capturing inherent counterfactual dependencies
for the same covariates.

Future Directions Several future extensions merit investi-
gation: (1) Generalization to K > 2 treatments through
parallel denoising heads (see Appendix), preserving param-
eter efficiency via shared base layers while maintaining the
original loss structure. (2) Adaptation to multi-modal data
(text, graphs, images) through modality-specific encoders,
building on works by Veitch et al. (2020) and Jerzak et al.
(2022). (3) Systematic evaluation of estimation robustness
under non-Euclidean data geometries. (4) Development of
model compression techniques (distillation/quantization) to
enhance efficiency without losing statistical rigor.

6. Conclusion

We present CDiff, a causal inference framework that syn-
ergizes diffusion-based conditional density estimation with
statistics theory. By reformulating counterfactual prediction
as a score-matching problem, CDiff achieves: (1) consistent
and asymptotically normal ATE estimates under standard
regularity conditions, (2) finite-sample error bounds for both
ATE and ITE predictions, and (3) SOTA empirical perfor-
mance across benchmarks with statistical significance. The
framework’s robustness to strong selection bias, as demon-
strated through empirical tests, positions it as a versatile tool
for high-stakes applications ranging from personalized im-
munotherapy design to algorithmic fairness auditing. CDiff
advances causal machine learning by demonstrating how
modern generative models can transcend their traditional de-
scriptive role to enable principled counterfactual reasoning.
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Statement of Impacts

CDiff represents a paradigm shift in causal inference,
unifying deep generative modeling with statistical the-
ory to address the core challenge of counterfactual esti-
mation. By leveraging conditional score-matching dif-
fusion, CDiff achieves unprecedented accuracy in learn-
ing potential outcome distributions, enabling robust es-
timation of both population-level effects (ATE/ATT)
and individualized treatment responses (ITE). Its SOTA
performance across synthetic and real-world bench-
marks—including high-dimensional healthcare and pol-
icy evaluation datasets—demonstrates practical value for
decision-making under uncertainty. The framework’s the-
oretical guarantees (consistency, asymptotic normality) di-
rectly enable confidence interval construction, bridging the
gap between machine learning flexibility and statistical rigor
required for high-stakes applications.
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A. Definitions and Assumptions

Definition A.1 (Holder norm). The Holder norm are widely used as a measure of smoothness (Gyorfi et al., 2006). Our
study focuses a family of density distributions that lie in a Holder ball. Let 5 = s 4 > 0 be a degree of smoothness, where
s = | 3] is an integer and v € [0, 1). For a function f : R? — R, its Holder norm is defined as

105 f () — 0% f(2)]
:= max sup|d°f(z)|+ max su
17l 2= oo PUplO™S @) B oo™ 2

where s is a multi-index. We say a function f is S-Holder if || f||;s < co. We define a Holder ball of radius B > 0 as
HP(B) = {f: R 5 R ||| flls < B}
Definition A.2 (Class of ReLU Score Network and Parameters). The class of ReLLU score network is defined as
F(My,W,k, L, K) := {s(y,z,t) = (Apo(-) + br) o--- o (A1[y/, 2’ t] + b1)}

where A; € R%*di+1 b, € R%+E maxd; < W, sup||s(y, 2,1)||cc < My, max ||A;|lso V ||bi]loo < & and Zle(HA,»Ho +

Y,z
|b:]lo) < K. For the conditional approximation, we choose the score network with parameters satisfying
Vieg N
M, = 0(X252) W = O(Nlog’ N)
0i

k= Qo' N) I — O(log* N), K = O(Nlog® N)

d+dg . .
where the network size parameter N = n@+=+7 ; for constants C,,, C, > 0, we take the early stopping time ty = N~ < 1
and the terminal time 7' = O(log n).

B. Mathematical Proofs
Proof B.1 (Proof for Theorem 3.1).

¢ G
. R . . 1 n 1 n
o VOGO w) =3 @) = Jim V| Do B 5 () = YE0) ~ g 3 (Fia(l) = Yia(0)
1 L nC
= Jm Va8 [ )~ Via () + g D e0) ~ ¥ 0)
i=1 1=1
TLG
: 1 . o
= lim Vn@|— O(n 4<d+dz+5>(1ogn)max(912+4+))
nG—+oo nG pt
-3
= lim (0930 (n¢ *TF (logn®)?mex® 5+ i+
nG —+o00
= op(1)

It shows that the first term v/n& (7% (z) — #(z)) converges to 0 in probability, therefore it has no effect on the asymptotic

distribution of 7= (z). For the second term v/nC (7 () — 7(x)), by Central Limit Theorem, we have vnC (#(z) — 7(x)) A

N(0,Var(Y; (1) — Y; »(0)). Finally, by Slutsky’s theorem,

VG (76 (z) — 7(x)) % N (0, Var(Yie(1) - Yi.(0)))
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Proof B.2 (Proof for Theorem 3.2). Define a triangular array whose nth row has nn® elements. The first n* elements
consist of a random sample {YS( (1 ) Yg(l (0) — 76 (X))} Gl, and the kth n© elements consist of a random sample

{ngk(l) - YZG)}LIC (0) — 79 (Xp) I 1 Each element Mnj in nth row has mean E[M,,;] = 0. Therefore, Var(M,;) =
E[M?;]. Let the sum of variance in nth row be s7 = E"” E[M?Z;] = n® D (Xu)p, E[(Y;5 (1) =Y (0) =76 (2))?).
By Lindeberg Central Limit Theorem,

Furthermore,
nG
i YG" 1 _YGn 0) — Gn — ! 1* YG 0) — Gn
i,T ( ) i,T ( ) T ('73) - LS nnG Z ( ) T (m)
IG{X Yhoy =1 nn T we{Xp}p_, =1
_ 1 LG G
n re{Xi)p_, VO re{ X,

n¢ 1 Gn n "
V n\/n ZzE{Xk}?:l Va ve{Xr}ioy

By Law of Large Number, the second term satisfies lim,,_, | % Y owe (X, 7Gn(x) = 7. Therefore, VnnC(r —
%ZIE{Xk}Ezl 7Y (2)) = Op(1). Therefore, \/T& (1 — %ZIE{X;C};?:] TG (2)) = 0,(1). Therefore, the second term
has no effect on the asymptotic distribution, which implies

Vre NS (9 =) SN 1)

-LE{Xk}n

C. Training Procedures here

C.1. Pseudocodes

Here we present the pseudocode for the conditional score-matching diffusion framework.

Algorithm 1 Training
repeat
Y( ~q(Yo), Y? ~q(Y1)
t ~ Uniform({1,...,7})
€ ~ N(O,I), €1 NN(O,I)
Do gradient descent Vy (|leo — €9(v/arYg + v/1— o‘zteo,t,X)H2 + |ler — ea(VarY? + V1= atel,t,X)HQ)

: until converged

AN N T

12



Conditional Diffusion Model for Causal Inference

Algorithm 2 Sampling
1: 77 ~ N(0,T)
2: Y =77, Yt =77
3: fort =Tto1ldo
4. z~N(0,]I)
5. Y5t = \/%(Yt - \}%ee(YB,t,X)) + oz
6 Y§_71 = J%(Yt — \}%Ee(Yg,t,X))-ﬁ-O’tZ
7: end for
8: return Y3,Y?

C.2. Hyperparameter Settings for Training CDiff

Blocks Sets of Hyper-parameters

Initialization Xavier Initialization for Weight matrix, Zero initialization for bias vector.
Optimization AdamW

Batch size 1024

Depth of layers 2 + 2 (See Sec 5.3 for details)

Hidden state dimension 512

a, B {0.1,0.01}

Table 5. Hyperparameters of CDiff

C.3. Implemental Details

We train all models with AdamW optimizer with initialization learning rate of le-4 and weight decay of le-2. The cosine
annealing learning rate warmup is adopted to stabilize the training process. Following common practice in the Diffusion
model, we maintain an exponential moving average (EMA) of eights over training with a decay of .999. We use 1000 time
steps during training while 500 time steps during inference. We train the model for about 100,000 steps. The hidden dim of
Denoising Module is set to 512.

D. Additional Simulation and Experiment Results can go here
D.1. Conditional Density Simulation

We evaluate CDiff’s ability to recover p(Y (w)|X = z) under extreme selection bias (Dg;. = 600), focusing on a fixed
covariate value zo. Using 10® generated samples per treatment arm, CDiff generates samples that are remarkably close to
ground truth distributions (Figure 5)), confirming accurate counterfactual density matching despite limited overlap.

0.25 . Y(0)=y|x) 025 p(Y(1)=y]|x)

0.20 0.20

015 015

0.10 010

0.05 0.05

0.00 0.00

Figure 5. Conditional density estimation under selection bias. CDiff-generated samples (colored histograms) versus ground truth
p(Y(w)|X = z0) (red curves).
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Dataset IHDP (és7Eg) ‘ IHDP (\/épeug)
Methods In-sample  Out-sample \ In-sample  Out-sample
CDift 09 .02 Jd2+.02 1.7+.2 1.8+.3

Scalar Only .11 +.03 14 £.04 1.8+.2 19+ .3
Binary Only .14 +.03 19+ .05 22+3 25+ 4
without CE 17 +.03 25+ .05 26+.3 28+ .4

Table 6. Ablation studies on IHDP of w/o using cosine embedding (CE) for conditions. Mean and STD values are computed over
multiple independent runs.

D.2. Additional Ablation Studies

Table 6 quantifies cosine embedding (CE)’s impact on IHDP’s mixed data types (scalar/binary covariates). Ablating CE
for either types increases prediction errors, where joint removal yielding further performance degradation. The greater
sensitivity to scalar covariates stems from their wider dynamic range—CE stabilizes learning by normalizing heterogeneous
input scales, whereas binary features inherently exhibit limited variance.

E. Alternative Version of Models

Multi-Treatment Extension Figure 6 extends CDiff to K treatments via parallel score heads {e!, }X_, with shared
covariate encoding. This preserves sample efficiency while scaling complexity linearly with K.

Ablated Architecture Figure 7 evaluates the 044 configuration (no shared layers between treatment arms), exhibiting
72% higher ,/eppyg than CDiff. This hints the potential cost of ignoring counterfactual information flow - a critical design
insight for causal architectures.

F. Discussion of Limitations

While CDiff excels in complex settings with nonlinear responses and high dimensional inputs, its computational intensity
makes classical low-dimensional linear regimes (e.g., randomized trials with small sample sizes) better served by simpler
estimators. This trade-off reflects CDiff’s design prioritization: sacrificing lightweight computation for unmatched fidelity in
modern, data-rich environments. Future work will extend CDiff to multi-modal data (e.g., medical imaging, sensor streams)
while developing distillation/quantization techniques to enhance efficiency without sacrificing theoretical guarantees.
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Figure 6. An Multi-Head Version of CDiff
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Figure 7. An Alternative Verion of Two-Head CDiff
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